630 research outputs found

    Beats of the Magnetocapacitance Oscillations in Lateral Semiconductor Superlattices

    Full text link
    We present calculations on the magnetocapacitance of the two-dimensional electron gas in a lateral semiconductor superlattice under two-dimensional weak periodic potential modulation in the presence of a perpendicular magnetic field. Adopting a Gaussian broadening of magnetic-field-dependent width in the density of states, we present explicit and simple expressions for the magnetocapacitance, valid for the relevant weak magnetic fields and modulation strengths. As the modulation strength in both directions increase, beats of the magnetocapacitance oscillations are observed, in the low magnetic field range (Weiss-oscillations regime), which are absent in the one-dimensional weak modulation case.Comment: 11 pages, 7 figures, accepted by Mod. Phys. Lett. B (March 2007

    Local dissipation effects in two-dimensional quantum Josephson junction arrays with magnetic field

    Full text link
    We study the quantum phase transitions in two-dimensional arrays of Josephson-couples junctions with short range Josephson couplings (given by the Josephson energy) and the charging energy. We map the problem onto the solvable quantum generalization of the spherical model that improves over the mean-field theory method. The arrays are placed on the top of a two-dimensional electron gas separated by an insulator. We include effects of the local dissipation in the presence of an external magnetic flux f in square lattice for several rational fluxes f=0,1/2,1/3,1/4 and 1/6. We also have examined the T=0 superconducting-insulator phase boundary as function of a dissipation alpha for two different geometry of the lattice: square and triangular. We have found critical value of the dissipation parameter independent on geometry of the lattice and presence magnetic field.Comment: accepted to PR

    Thermodynamics of Rotating Black Branes in Gauss-Bonnet-Born-Infeld Gravity

    Full text link
    Considering both the Gauss-Bonnet and the Born-Infeld terms, which are on similar footing with regard to string corrections on the gravity side and electrodynamic side, we present a new class of rotating solutions in Gauss-Bonnet gravity with kk rotation parameters in the presence of a nonlinear electromagnetic field. These solutions, which are asymptotically anti-de Sitter in the presence of cosmological constant, may be interpreted as black brane solutions with inner and outer event horizons, an extreme black brane or naked singularity provided the metric parameters are chosen suitably. We calculate the finite action and conserved quantities of the solutions by using the counterterm method, and find that these quantities do not depend on the Gauss-Bonnet parameter. We also compute the temperature, the angular velocities, the electric charge and the electric potential. Then, we calculate the entropy of the black brane through the use of Gibbs-Duhem relation and show that it obeys the area law of entropy. We obtain a Smarr-type formula for the mass as a function of the entropy, the angular momenta and the charge, and show that the conserved and thermodynamic quantities satisfy the first law of thermodynamics. Finally, we perform a stability analysis in both the canonical and grand-canonical ensemble and show that the presence of a nonlinear electromagnetic field has no effect on the stability of the black branes, and they are stable in the whole phase space.Comment: 17 pages, one figur

    Nexus between quantum criticality and the chemical potential pinning in high-TcT_c cuprates

    Full text link
    For strongly correlated electrons the relation between total number of charge carriers nen_e and the chemical potential μ\mu reveals for large Coulomb energy the apparently paradoxical pinning of μ\mu within the Mott gap, as observed in high-TcT_c cuprates. By unravelling consequences of the non-trivial topology of the charge gauge U(1) group and the associated ground state degeneracy we found a close kinship between the pinning of μ\mu and the zero-temperature divergence of the charge compressibility κne/μ\kappa\sim\partial n_e/\partial\mu, which marks a novel quantum criticality governed by topological charges rather than Landau principle of the symmetry breaking.Comment: 4+ pages, 2 figures, typos corrected, version as publishe

    Finite-temperature effects on the superfluid Bose-Einstein condensation of confined ultracold atoms in three-dimensional optical lattices

    Full text link
    We discuss the finite-temperature phase diagram in the three-dimensional Bose-Hubbard (BH) model in the strong correlation regime, relevant for Bose-Einstein condensates in optical lattices, by employing a quantum rotor approach. In systems with strong on site repulsive interactions, the rotor U(1) phase variable dual to the local boson density emerges as an important collective field. After establishing the connection between the rotor construction and the the on--site interaction in the BH model the robust effective action formalism is developed which allows us to study the superfluid phase transition in various temperature--interaction regimes

    Electromagnetic Magic: The Relativistically Rotating Disk

    Full text link
    A closed form analytic solution is found for the electromagnetic field of the charged uniformly rotating conducting disk for all values of the tip speed vv up to cc. For v=cv=c it becomes the Magic field of the Kerr-Newman black hole with GG set to zero. The field energy, field angular momentum and gyromagnetic ratio are calculated and compared with those of the electron. A new mathematical expression that sums products of 3 Legendre functions each of a different argument, is demonstrated.Comment: 10 pages, one figur

    Divergence of the Chaotic Layer Width and Strong Acceleration of the Spatial Chaotic Transport in Periodic Systems Driven by an Adiabatic ac Force

    Full text link
    We show for the first time that a {\it weak} perturbation in a Hamiltonian system may lead to an arbitrarily {\it wide} chaotic layer and {\it fast} chaotic transport. This {\it generic} effect occurs in any spatially periodic Hamiltonian system subject to a sufficiently slow ac force. We explain it and develop an explicit theory for the layer width, verified in simulations. Chaotic spatial transport as well as applications to the diffusion of particles on surfaces, threshold devices and others are discussed.Comment: 4 pages including 3 EPS figures, this is an improved version of the paper (accepted to PRL, 2005

    Spectral flow and level spacing of edge states for quantum Hall hamiltonians

    Full text link
    We consider a non relativistic particle on the surface of a semi-infinite cylinder of circumference LL submitted to a perpendicular magnetic field of strength BB and to the potential of impurities of maximal amplitude ww. This model is of importance in the context of the integer quantum Hall effect. In the regime of strong magnetic field or weak disorder B>>wB>>w it is known that there are chiral edge states, which are localised within a few magnetic lengths close to, and extended along the boundary of the cylinder, and whose energy levels lie in the gaps of the bulk system. These energy levels have a spectral flow, uniform in LL, as a function of a magnetic flux which threads the cylinder along its axis. Through a detailed study of this spectral flow we prove that the spacing between two consecutive levels of edge states is bounded below by 2παL12\pi\alpha L^{-1} with α>0\alpha>0, independent of LL, and of the configuration of impurities. This implies that the level repulsion of the chiral edge states is much stronger than that of extended states in the usual Anderson model and their statistics cannot obey one of the Gaussian ensembles. Our analysis uses the notion of relative index between two projections and indicates that the level repulsion is connected to topological aspects of quantum Hall systems.Comment: 22 pages, no figure

    Some examples of exponentially harmonic maps

    Get PDF
    The aim of this paper is to study some examples of exponentially harmonic maps. We study such maps firstly on flat euclidean and Minkowski spaces and secondly on Friedmann-Lema\^ itre universes. We also consider some new models of exponentially harmonic maps which are coupled with gravity which happen to be based on a generalization of the lagrangian for bosonic strings coupled with dilatonic field.Comment: 16 pages, 5 figure

    Level rearrangement in exotic atoms and quantum dots

    Get PDF
    A presentation and a generalisation are given of the phenomenon of level rearrangement, which occurs when an attractive long-range potential is supplemented by a short-range attractive potential of increasing strength. This problem has been discovered in condensate-matter physics and has also been studied in the physics of exotic atoms. A similar phenomenon occurs in a situation inspired by quantum dots, where a short-range interaction is added to an harmonic confinement.Comment: 12 pages, 11 figures, RevTeX
    corecore