603 research outputs found

    The reversible polydisperse Parking Lot Model

    Full text link
    We use a new version of the reversible Parking Lot Model to study the compaction of vibrated polydisperse media. The particle sizes are distributed according to a truncated power law. We introduce a self-consistent desorption mechanism with a hierarchical initialization of the system. In this way, we approach densities close to unity. The final density depends on the polydispersity of the system as well as on the initialization and will reach a maximum value for a certain exponent in the power law.Comment: 7 pages, Latex, 12 figure

    Damage of woven composite under tensile and shear stress using infrared thermography and micrographic cuts

    Get PDF
    Infrared thermography was used to study damage developing in woven fabrics. Two different experiments were performed, a ±45° tensile test and a rail shear test. These two different types of tests show different damage scenarios, even if the shear stress/strain curves are similar. The ±45° tension test shows matrix hardening and matrix cracking whereas the rail shear test shows only matrix hardening. The infrared thermography was used to perform an energy balance, which enabled the visualization of the portion of dissipated energy caused by matrix cracking. The results showed that when the resin is subjected to pure shear, a larger amount of energy is stored by the material, whereas when the resin is subjected to hydrostatic pressure, the main part of mechanical energy is dissipated as heat

    Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins

    Get PDF
    Maintenance of appropriate iron homeostasis in the brain is important, but the mechanisms involved in brain iron uptake are incompletely understood. Here, we have analyzed where messenger RNAs that encode iron transport proteins are expressed in the brain, using the Allen Brain atlas, and we conclude that several important iron transporters are highly expressed in the choroid plexus. Based on recent estimates of the surface area of the choroid plexus and on MRI imaging studies of manganese uptake in the brain, we propose that the choroid plexus may have a much greater role than has been previously appreciated in brain iron transport

    Climate change is catchy – but when will it really hurt?

    Get PDF
    Concern and general awareness about the impacts of climate change in all sectors of the social- ecological-economic system is growing as a result of improved climate science products and information, as well as increased media coverage of the apparent manifestations of the phenomenon in our society. However, scales of climate variability and change, in space and time, are often confused and so  attribution of impacts on various sectors, including the health sector, can be misunderstood and  misrepresented. In this review, we assess the mechanistic links between climate and infectious  diseases in particular, and consider how this relationship varies, and may vary according to different time scales, especially for aetiologically climate-linked diseases. While climate varies in the medium (inter- annual) time frame, this variability itself may be oscillating and/or trending on cyclical and long-term (climate change) scales because of regional and global scale climate phenomena such as the El-Niño southern oscillation coupled with global-warming drivers of  climate change. As several studies have shown, quantifying and modelling these linkages and associations at appropriate time and space scales is both necessary and increasingly feasible with improved climate science products and better epidemiological data. The application of this approach is considered for South Africa, and the need for a more concerted effort in this regard is supported

    Madagascar corals track sea surface temperature variability in the Agulhas Current core region over the past 334 years

    Get PDF
    The Agulhas Current (AC) is the strongest western boundary current in the Southern Hemisphere and is key for weather and climate patterns, both regionally and globally. Its heat transfer into both the midlatitude South Indian Ocean and South Atlantic is of global significance. A new composite coral record (Ifaty and Tulear massive Porites corals), is linked to historical AC sea surface temperature (SST) instrumental data, showing robust correlations. The composite coral SST data start in 1660 and comprise 200 years more than the AC instrumental record. Numerical modelling exhibits that this new coral derived SST record is representative for the wider core region of the AC. AC SSTs variabilities show distinct cooling through the Little Ice Age and warming during the late 18th, 19th and 20th century, with significant decadal variability superimposed. Furthermore, the AC SSTs are teleconnected with the broad southern Indian and Atlantic Oceans, showing that the AC system is pivotal for inter-ocean heat exchange south of Africa

    Guidance in social and ethical issues related to clinical, diagnostic care and novel therapies for hereditary neuromuscular rare diseases: "translating" the translational.

    Get PDF
    Drug trials in children engage with many ethical issues, from drug-related safety concerns to communication with patients and parents, and recruitment and informed consent procedures. This paper addresses the field of neuromuscular disorders where the possibility of genetic, mutation-specific treatments, has added new complexity. Not only must trial design address issues of equity of access, but researchers must also think through the implications of adopting a personalised medicine approach, which requires a precise molecular diagnosis, in addition to other implications of developing orphan drugs. It is against this background of change and complexity that the Project Ethics Council (PEC) was established within the TREAT-NMD EU Network of Excellence. The PEC is a high level advisory group that draws upon the expertise of its interdisciplinary membership which includes clinicians, lawyers, scientists, parents, representatives of patient organisations, social scientists and ethicists. In this paper we describe the establishment and terms of reference of the PEC, give an indication of the range and depth of its work and provide some analysis of the kinds of complex questions encountered. The paper describes how the PEC has responded to substantive ethical issues raised within the TREAT-NMD consortium and how it has provided a wider resource for any concerned parent, patient, or clinician to ask a question of ethical concern. Issues raised range from science related ethical issues, issues related to hereditary neuromuscular diseases and the new therapeutic approaches and questions concerning patients rights in the context of patient registries and bio-banks. We conclude by recommending the PEC as a model for similar research contexts in rare diseases

    String-like Clusters and Cooperative Motion in a Model Glass-Forming Liquid

    Full text link
    A large-scale molecular dynamics simulation is performed on a glass-forming Lennard-Jones mixture to determine the nature of dynamical heterogeneities which arise in this model fragile liquid. We observe that the most mobile particles exhibit a cooperative motion in the form of string-like paths (``strings'') whose mean length and radius of gyration increase as the liquid is cooled. The length distribution of the strings is found to be similar to that expected for the equilibrium polymerization of linear polymer chains.Comment: 6 pages of RevTex, 6 postscript figures, uses epsf.st

    Interface localisation-delocalisation transition in a symmetric polymer blend: a finite-size scaling Monte Carlo study

    Full text link
    Using extensive Monte Carlo simulations we study the phase diagram of a symmetric binary (AB) polymer blend confined into a thin film as a function of the film thickness D. The monomer-wall interactions are short ranged and antisymmetric, i.e, the left wall attracts the A-component of the mixture with the same strength as the right wall the B-component, and give rise to a first order wetting transition in a semi-infinite geometry. The phase diagram and the crossover between different critical behaviors is explored. For large film thicknesses we find a first order interface localisation/delocalisation transition and the phase diagram comprises two critical points, which are the finite film width analogies of the prewetting critical point. Using finite size scaling techniques we locate these critical points and present evidence of 2D Ising critical behavior. When we reduce the film width the two critical points approach the symmetry axis ϕ=1/2\phi=1/2 of the phase diagram and for D2RgD \approx 2 R_g we encounter a tricritical point. For even smaller film thickness the interface localisation/delocalisation transition is second order and we find a single critical point at ϕ=1/2\phi=1/2. Measuring the probability distribution of the interface position we determine the effective interaction between the wall and the interface. This effective interface potential depends on the lateral system size even away from the critical points. Its system size dependence stems from the large but finite correlation length of capillary waves. This finding gives direct evidence for a renormalization of the interface potential by capillary waves in the framework of a microscopic model.Comment: Phys.Rev.

    Exact Three Dimensional Casimir Force Amplitude, CC-function and Binder's Cumulant Ratio: Spherical Model Results

    Full text link
    The three dimensional mean spherical model on a hypercubic lattice with a film geometry L×2L\times \infty ^2 under periodic boundary conditions is considered in the presence of an external magnetic field HH. The universal Casimir amplitude Δ\Delta and the Binder's cumulant ratio BB are calculated exactly and found to be Δ=2ζ(3)/(5π)0.153051\Delta =-2\zeta (3)/(5\pi)\approx -0.153051 and B=2π/(5ln3[(1+5)/2]).B=2\pi /(\sqrt{5}\ln ^3[(1+\sqrt{5})/2]). A discussion on the relations between the finite temperature CC-function, usually defined for quantum systems, and the excess free energy (due to the finite-size contributions to the free energy of the system) scaling function is presented. It is demonstrated that the CC-function of the model equals 4/5 at the bulk critical temperature TcT_c. It is analytically shown that the excess free energy is a monotonically increasing function of the temperature TT and of the magnetic field H|H| in the vicinity of Tc.T_c. This property is supposed to hold for any classical dd-dimensional O(n),n>2,O(n),n>2, model with a film geometry under periodic boundary conditions when d3d\leq 3. An analytical evidence is also presented to confirm that the Casimir force in the system is negative both below and in the vicinity of the bulk critical temperature Tc.T_c.Comment: 12 pages revtex, one eps figure, submitted to Phys. Rev E A set of references added with the text needed to incorporate them. Small changes in the title and in the abstrac
    corecore