27,896 research outputs found

    High-resolution absorption spectroscopy of the circumgalactic medium of the Milky Way

    Full text link
    In this article we discuss the importance of high-resolution absorption spectroscopy for our understanding of the distribution and physical nature of the gaseous circumgalactic medium (CGM) that surrounds the Milky Way. Observational and theoretical studies indicate a high complexity of the gas kinematics and an extreme multi-phase nature of the CGM in low-redshift galaxies. High-precision absorption-line measurements of the Milky Way's gas environment thus are essential to explore fundamental parameters of circumgalactic gas in the local Universe, such as mass, chemical composition, and spatial distribution. We shortly review important characteristics of the Milky Way's CGM and discuss recent results from our multi-wavelength observations of the Magellanic Stream. Finally, we discuss the potential of studying the warm-hot phase of the Milky Way's CGM by searching for extremely weak [FeX] l6374.5 and [FeIVX] l5302.9 absorption in optical QSO spectra.Comment: 7 pages, 4 figures; accepted for publication in Astronomical Notes (paper version of a talk presented at the 10th Thinkshop, Potsdam, 2013

    Modeling GRB 050904: Autopsy of a Massive Stellar Explosion at z=6.29

    Get PDF
    GRB 050904 at redshift z=6.29, discovered and observed by Swift and with spectroscopic redshift from the Subaru telescope, is the first gamma-ray burst to be identified from beyond the epoch of reionization. Since the progenitors of long gamma-ray bursts have been identified as massive stars, this event offers a unique opportunity to investigate star formation environments at this epoch. Apart from its record redshift, the burst is remarkable in two respects: first, it exhibits fast-evolving X-ray and optical flares that peak simultaneously at t~470 s in the observer frame, and may thus originate in the same emission region; and second, its afterglow exhibits an accelerated decay in the near-infrared (NIR) from t~10^4 s to t~3 10^4 s after the burst, coincident with repeated and energetic X-ray flaring activity. We make a complete analysis of available X-ray, NIR, and radio observations, utilizing afterglow models that incorporate a range of physical effects not previously considered for this or any other GRB afterglow, and quantifying our model uncertainties in detail via Markov Chain Monte Carlo analysis. In the process, we explore the possibility that the early optical and X-ray flare is due to synchrotron and inverse Compton emission from the reverse shock regions of the outflow. We suggest that the period of accelerated decay in the NIR may be due to suppression of synchrotron radiation by inverse Compton interaction of X-ray flare photons with electrons in the forward shock; a subsequent interval of slow decay would then be due to a progressive decline in this suppression. The range of acceptable models demonstrates that the kinetic energy and circumburst density of GRB 050904 are well above the typical values found for low-redshift GRBs.Comment: 45 pages, 7 figures, and ApJ accepted. Revised version, minor modifications and 1 extra figur

    Joint Astrophysics Nascent Universe Satellite:. utilizing GRBs as high redshift probes

    Get PDF
    The Joint Astrophysics Nascent Universe Satellite (JANUS) is a multiwavelength cosmology mission designed to address fundamental questions about the cosmic dawn. It has three primary science objectives: (1) measure the massive star formation rate over 5 ≀ z ≀ 12 by discovering and observing high-z gamma-ray bursts (GRBs) and their afterglows, (2) enable detailed studies of the history of reionization and metal enrichment in the early Universe, and (3) map the growth of the first supermassive black holes by discovering and observing the brightest quasars at z ≄ 6. A rapidly slewing spacecraft and three science instruments – the X-ray Coded Aperture Telescope (XCAT), the Near InfraRed Telescope (NIRT), and the GAmma-ray Transient Experiment for Students (GATES) – make-up the JANUS observatory and are responsible for realizing the three primary science objectives. The XCAT (0.5–20 keV) is a wide field of view instrument responsible for detecting and localizing ∌60 z ≄ 5 GRBs, including ∌8 z ≄ 8 GRBs, during a 2-year mission. The NIRT (0.7–1.7 ”m) refines the GRB positions and provides rapid (≀ 30 min) redshift information to the astronomical community. Concurrently, the NIRT performs a 20, 000 deg2 survey of the extragalactic sky discovering and localizing ∌300 z ≄ 6 quasars, including ∌50 at z ≄ 7, over a two-year period. The GATES provides high-energy (15 keV −1.0 MeV) spectroscopy as well as 60–500 keV polarimetry of bright GRBs. Here we outline the JANUS instrumentation and the mission science motivations

    Three New Long Period X-ray Pulsars Discovered in the Small Magellanic Cloud

    Get PDF
    The Small Magellanic Cloud is increasingly an invaluable laboratory for studying accreting and isolated X-ray pulsars. We add to the class of compact SMC objects by reporting the discovery of three new long period X-ray pulsars detected with the {\it Chandra X-ray Observatory}. The pulsars, with periods of 152, 304 and 565 seconds, all show hard X-ray spectra over the range from 0.6 - 7.5 keV. The source positions of the three pulsars are consistent with known H-alpha emission sources, indicating they are likely to be Be type X-ray binary star systems.Comment: Accepted for publication in the Astrophysical Journa

    Hot melt adhesive attachment pad

    Get PDF
    A hot melt adhesive attachment pad for releasably securing distinct elements together is described which is particularly useful in the construction industry or a spatial vacuum environment. The attachment pad consists primarily of a cloth selectively impregnated with a charge of hot melt adhesive, a thermo-foil heater, and a thermo-cooler. These components are securely mounted in a mounting assembly. In operation, the operator activates the heating cycle transforming the hot melt adhesive to a substantially liquid state, positions the pad against the attachment surface, and activates the cooling cycle solidifying the adhesive and forming a strong, releasable bond

    Hubble Space Telescope and Ground-Based Optical and Ultraviolet Observations of GRB010222

    Get PDF
    We report on Hubble Space Telescope WFPC2 optical and STIS near ultraviolet MAMA observations, and ground-based optical observations of GRB010222, spanning 15 hrs to 71 days. The observations are well-described by a relativistic blast-wave model with a hard electron-energy distribution, p = 1.57, and a jet transition at t_j=0.93 days. These values are slightly larger than previously found as a result of a correction for the contribution from the host galaxy to the late-time ground-based observations and the larger temporal baseline provided by the Hubble Space Telescope observations. The host galaxy is found to contain a very compact core (size <0.25 arcsec) which coincides with the position of the optical transient. The STIS near ultraviolet MAMA observations allow for an investigation of the extinction properties along the line of sight to GRB010222. We find that the far ultraviolet curvature component (c_4) is rather large. In combination with the low optical extinction A_V =0.11 mag, when compared to the Hydrogen column inferred from X-ray observations, we suggest that this is evidence for dust destruction.Comment: ApJ, in pres

    Plasticization and antiplasticization of polymer melts diluted by low molar mass species

    Full text link
    An analysis of glass formation for polymer melts that are diluted by structured molecular additives is derived by using the generalized entropy theory, which involves a combination of the Adam-Gibbs model and the direct computation of the configurational entropy based on a lattice model of polymer melts that includes monomer structural effects. Antiplasticization is accompanied by a "toughening" of the glass mixture relative to the pure polymer, and this effect is found to occur when the diluents are small species with strongly attractive interactions with the polymer matrix. Plasticization leads to a decreased glass transition temperature T_g and a "softening" of the fragile host polymer in the glass state. Plasticization is prompted by small additives with weakly attractive interactions with the polymer matrix. The shifts in T_g of polystyrene diluted by fully flexible short oligomers are evaluated from the computations, along with the relative changes in the isothermal compressibility at T_g to characterize the extent to which the additives act as antiplasticizers or plasticizers. The theory predicts that a decreased fragility can accompany both antiplasticization and plasticization of the glass by molecular additives. The general reduction in the T_g and fragility of polymers by these molecular additives is rationalized by analyzing the influence of the diluent's properties (cohesive energy, chain length, and stiffness) on glass formation in diluted polymer melts. The description of glass formation at fixed temperature that is induced upon change the fluid composition directly implies the Angell equation for the structural relaxation time as function of the polymer concentration, and the computed "zero mobility concentration" scales linearly with the inverse polymerization index N.Comment: 12 pages, 15 figure
    • 

    corecore