1,656 research outputs found

    Reconnection of a kinking flux rope triggering the ejection of a microwave and hard X-ray source. II. Numerical Modeling

    Full text link
    Numerical simulations of the helical (m ⁣= ⁣1m\!=\!1) kink instability of an arched, line-tied flux rope demonstrate that the helical deformation enforces reconnection between the legs of the rope if modes with two helical turns are dominant as a result of high initial twist in the range Ω≳6π\Phi\gtrsim6\pi. Such reconnection is complex, involving also the ambient field. In addition to breaking up the original rope, it can form a new, low-lying, less twisted flux rope. The new flux rope is pushed downward by the reconnection outflow, which typically forces it to break as well by reconnecting with the ambient field. The top part of the original rope, largely rooted in the sources of the ambient flux after the break-up, can fully erupt or be halted at low heights, producing a "failed eruption." The helical current sheet associated with the instability is squeezed between the approaching legs, temporarily forming a double current sheet. The leg-leg reconnection proceeds at a high rate, producing sufficiently strong electric fields that it would be able to accelerate particles. It may also form plasmoids, or plasmoid-like structures, which trap energetic particles and propagate out of the reconnection region up to the top of the erupting flux rope along the helical current sheet. The kinking of a highly twisted flux rope involving leg-leg reconnection can explain key features of an eruptive but partially occulted solar flare on 18 April 2001, which ejected a relatively compact hard X-ray and microwave source and was associated with a fast coronal mass ejection.Comment: Solar Physics, in pres

    Disc-oscillation resonance and neutron star QPOs: 3:2 epicyclic orbital model

    Full text link
    The high-frequency quasi-periodic oscillations (HF QPOs) that appear in the X-ray fluxes of low-mass X-ray binaries remain an unexplained phenomenon. Among other ideas, it has been suggested that a non-linear resonance between two oscillation modes in an accretion disc orbiting either a black hole or a neutron star plays a role in exciting the observed modulation. Several possible resonances have been discussed. A particular model assumes resonances in which the disc-oscillation modes have the eigenfrequencies equal to the radial and vertical epicyclic frequencies of geodesic orbital motion. This model has been discussed for black hole microquasar sources as well as for a group of neutron star sources. Assuming several neutron (strange) star equations of state and Hartle-Thorne geometry of rotating stars, we briefly compare the frequencies expected from the model to those observed. Our comparison implies that the inferred neutron star radius "RNS" is larger than the related radius of the marginally stable circular orbit "rms" for nuclear matter equations of state and spin frequencies up to 800Hz. For the same range of spin and a strange star (MIT) equation of state, the inferrred radius RNS is roughly equal to rms. The Paczynski modulation mechanism considered within the model requires that RNS < rms. However, we find this condition to be fulfilled only for the strange matter equation of state, masses below one solar mass, and spin frequencies above 800Hz. This result most likely falsifies the postulation of the neutron star 3:2 resonant eigenfrequencies being equal to the frequencies of geodesic radial and vertical epicyclic modes. We suggest that the 3:2 epicyclic modes could stay among the possible choices only if a fairly non-geodesic accretion flow is assumed, or if a different modulation mechanism operates.Comment: 7 pages, 4 figures (in colour), accepted for publication in Astronomy & Astrophysic

    Observational properties of a kink unstable coronal loop

    Get PDF
    Aims. Previous work on the dynamics of the kink instability has concentrated on the evolution of the magnetic field and associated current sheets. Here we aim to determine the observational consequences of the kink instability in short coronal loops, particularly what images TRACE would record of such an instability. This paper concentrates on the internal m = 1 mode where the kink structure of the instability may not be apparent from the global field shape. This is most relevant to the observation of active region brightenings and coronal bright points. Methods. An existing fluid code was modified to include the TRACE temperature response function in order to calculate temporally and spatially averaged, line of sight images in the 171, 195 and 284 Å band passes for straight, kink unstable flux tubes. Results. Two new fluid effects of the kink instability are discovered: the circular enhancement of the density at the foot points and the appearance of a low density band running across the flux tube. The second of these effects is shown to be imagable by TRACE and hence would be a good candidate observational signature for an internal m = 1 kink unstable loop

    Quasiperiodic oscillations in a strong gravitational field around neutron stars testing braneworld models

    Full text link
    The strong gravitational field of neutron stars in the brany universe could be described by spherically symmetric solutions with a metric in the exterior to the brany stars being of the Reissner-Nordstrom type containing a brany tidal charge representing the tidal effect of the bulk spacetime onto the star structure. We investigate the role of the tidal charge in orbital models of high-frequency quasiperiodic oscillations (QPOs) observed in neutron star binary systems. We focus on the relativistic precession model. We give the radial profiles of frequencies of the Keplerian (vertical) and radial epicyclic oscillations. We show how the standard relativistic precession model modified by the tidal charge fits the observational data, giving estimates of the allowed values of the tidal charge and the brane tension based on the processes going in the vicinity of neutron stars. We compare the strong field regime restrictions with those given in the weak-field limit of solar system experiments.Comment: 26 pages, 6 figure

    The Aschenbach effect: unexpected topology changes in motion of particles and fluids orbiting rapidly rotating Kerr black holes

    Full text link
    Newton's theory predicts that the velocity VV of free test particles on circular orbits around a spherical gravity center is a decreasing function of the orbital radius rr, dV/dr<0dV/dr < 0. Only very recently, Aschenbach (A&A 425, p. 1075 (2004)) has shown that, unexpectedly, the same is not true for particles orbiting black holes: for Kerr black holes with the spin parameter a>0.9953a>0.9953, the velocity has a positive radial gradient for geodesic, stable, circular orbits in a small radial range close to the black hole horizon. We show here that the {\em Aschenbach effect} occurs also for non-geodesic circular orbits with constant specific angular momentum ℓ=ℓ0=const\ell = \ell_0 = const. In Newton's theory it is V=ℓ0/RV = \ell_0/R, with RR being the cylindrical radius. The equivelocity surfaces coincide with the R=constR = const surfaces which, of course, are just co-axial cylinders. It was previously known that in the black hole case this simple topology changes because one of the ``cylinders'' self-crosses. We show here that the Aschenbach effect is connected to a second topology change that for the ℓ=const\ell = const tori occurs only for very highly spinning black holes, a>0.99979a>0.99979.Comment: 9 pages, 7 figure
    • 

    corecore