1,233 research outputs found
RESISTANCE OF COARSE SEDIMENTS OF THE HUNGARIAN DANUBE SECTION AGAINST CLIMATIC AND ENVIRONMENTAL EFFECTS
Complex studies hr!vc lWCll earried out at the Dppartment on th" matnial of gravel
fields with different origin by detailed technical-geological evaluation in various parts of the
country with the financial support of the Central Geological Office. The demand for the explora-
tion. exploitation and utilization of the gravel field in the Hungarian Danube section and its
immediate neighbourhood is the main point (with special reference to the choice of gravel
supplying regions for individual areas). The durability of stone materiah used for constructions
is determined to a great extent by the material quality, characteristic, and unfavourable min-
eral components of the rock. The durability characteristics of the pebbly rocks hayc to be
known before their use in order to ensure the normal functioning of constructions for a desired
period of time. This is the objectiye of the present paper
Shear band formation in granular media as a variational problem
Strain in sheared dense granular material is often localized in a narrow
region called shear band. Recent experiments in a modified Couette cell
provided localized shear flow in the bulk away from the confining walls. The
non-trivial shape of the shear band was measured as the function of the cell
geometry. First we present a geometric argument for narrow shear bands which
connects the function of their surface position with the shape in the bulk.
Assuming a simple dissipation mechanism we show that the principle of minimum
dissipation of energy provides a good description of the shape function.
Furthermore, we discuss the possibility and behavior of shear bands which are
detached from the free surface and are entirely covered in the bulk.Comment: 4 pages, 5 figures; minor changes, typos and journal-ref adde
Disc-oscillation resonance and neutron star QPOs: 3:2 epicyclic orbital model
The high-frequency quasi-periodic oscillations (HF QPOs) that appear in the
X-ray fluxes of low-mass X-ray binaries remain an unexplained phenomenon. Among
other ideas, it has been suggested that a non-linear resonance between two
oscillation modes in an accretion disc orbiting either a black hole or a
neutron star plays a role in exciting the observed modulation. Several possible
resonances have been discussed. A particular model assumes resonances in which
the disc-oscillation modes have the eigenfrequencies equal to the radial and
vertical epicyclic frequencies of geodesic orbital motion. This model has been
discussed for black hole microquasar sources as well as for a group of neutron
star sources. Assuming several neutron (strange) star equations of state and
Hartle-Thorne geometry of rotating stars, we briefly compare the frequencies
expected from the model to those observed. Our comparison implies that the
inferred neutron star radius "RNS" is larger than the related radius of the
marginally stable circular orbit "rms" for nuclear matter equations of state
and spin frequencies up to 800Hz. For the same range of spin and a strange star
(MIT) equation of state, the inferrred radius RNS is roughly equal to rms. The
Paczynski modulation mechanism considered within the model requires that RNS <
rms. However, we find this condition to be fulfilled only for the strange
matter equation of state, masses below one solar mass, and spin frequencies
above 800Hz. This result most likely falsifies the postulation of the neutron
star 3:2 resonant eigenfrequencies being equal to the frequencies of geodesic
radial and vertical epicyclic modes. We suggest that the 3:2 epicyclic modes
could stay among the possible choices only if a fairly non-geodesic accretion
flow is assumed, or if a different modulation mechanism operates.Comment: 7 pages, 4 figures (in colour), accepted for publication in Astronomy
& Astrophysic
The origin of net electric currents in solar active regions
There is a recurring question in solar physics about whether or not electric
currents are neutralized in active regions (ARs). This question was recently
revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical
simulations of magnetic flux emergence into the solar atmosphere. Such
simulations showed that flux emergence can generate a substantial net current
in ARs. Another source of AR currents are photospheric horizontal flows. Our
aim is to determine the conditions for the occurrence of net vs. neutralized
currents with this second mechanism. Using 3D MHD simulations, we
systematically impose line-tied, quasi-static, photospheric twisting and
shearing motions to a bipolar potential magnetic field. We find that such
flows: (1) produce both {\it direct} and {\it return} currents, (2) induce very
weak compression currents - not observed in 2.5D - in the ambient field present
in the close vicinity of the current-carrying field, and (3) can generate
force-free magnetic fields with a net current. We demonstrate that neutralized
currents are in general produced only in the absence of magnetic shear at the
photospheric polarity inversion line - a special condition rarely observed. We
conclude that, as magnetic flux emergence, photospheric flows can build up net
currents in the solar atmosphere, in agreement with recent observations. These
results thus provide support for eruption models based on pre-eruption magnetic
fields possessing a net coronal current.Comment: 14 pages and 11 figures (Accepted in The Astrophysical Journal
Catastrophe versus instability for the eruption of a toroidal solar magnetic flux rope
The onset of a solar eruption is formulated here as either a magnetic
catastrophe or as an instability. Both start with the same equation of force
balance governing the underlying equilibria. Using a toroidal flux rope in an
external bipolar or quadrupolar field as a model for the current-carrying flux,
we demonstrate the occurrence of a fold catastrophe by loss of equilibrium for
several representative evolutionary sequences in the stable domain of parameter
space. We verify that this catastrophe and the torus instability occur at the
same point; they are thus equivalent descriptions for the onset condition of
solar eruptions.Comment: V2: update to conform to the published article; new choice for
internal inductance of torus; updated Fig. 2; new Figs. 3, 5, and
- …