36 research outputs found

    Challenges in RNA virus bioinformatics

    Get PDF
    Motivation: Computer-assisted studies of structure, function and evolution of viruses remains a neglected area of research. The attention of bioinformaticians to this interesting and challenging field is far from commensurate with its medical and biotechnological importance. It is telling that out of >200 talks held at ISMB 2013, the largest international bioinformatics conference, only one presentation explicitly dealt with viruses. In contrast to many broad, established and well-organized bioinformatics communities (e.g. structural genomics, ontologies, next-generation sequencing, expression analysis), research groups focusing on viruses can probably be counted on the fingers of two hands. Results: The purpose of this review is to increase awareness among bioinformatics researchers about the pressing needs and unsolved problems of computational virology. We focus primarily on RNA viruses that pose problems to many standard bioinformatics analyses owing to their compact genome organization, fast mutation rate and low evolutionary conservation. We provide an overview of tools and algorithms for handling viral sequencing data, detecting functionally important RNA structures, classifying viral proteins into families and investigating the origin and evolution of viruses. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online. The references for this article can be found in the Supplementary Materia

    Full-length haplotype reconstruction to infer the structure of heterogeneous virus populations

    Get PDF
    Next-generation sequencing (NGS) technologies enable new insights into the diversity of virus populations within their hosts. Diversity estimation is currently restricted to single-nucleotide variants or to local fragments of no more than a few hundred nucleotides defined by the length of sequence reads. To study complex heterogeneous virus populations comprehensively, novel methods are required that allow for complete reconstruction of the individual viral haplotypes. Here, we show that assembly of whole viral genomes of ∼8600 nucleotides length is feasible from mixtures of heterogeneous HIV-1 strains derived from defined combinations of cloned virus strains and from clinical samples of an HIV-1 superinfected individual. Haplotype reconstruction was achieved using optimized experimental protocols and computational methods for amplification, sequencing and assembly. We comparatively assessed the performance of the three NGS platforms 454 Life Sciences/Roche, Illumina and Pacific Biosciences for this task. Our results prove and delineate the feasibility of NGS-based full-length viral haplotype reconstruction and provide new tools for studying evolution and pathogenesis of viruse

    Erfolgreich Forschen

    Full text link

    Marketing warfare -- Fact or fiction?

    No full text
    This article uses the term "marketing warfare" to describe some forms of marketing behaviour used by companies (1). Does marketing warfare between competitors actually take place? The answer is a very definite "yes".

    Mitbestimmung / Zukunftsfragen

    No full text

    Economic and pre-economic impact of academic medicine Frankfurt am Main, Germany

    No full text
    The current intense political and public debate about the financing system for academic medicine in Germany lacks one major argument concerning the output of university hospitals and medical faculties. The following research project presents an economic discussion about the benefits of Academic Medicine Frankfurt am Main by determining the value-added, employment and tax effects for public authorities in addition to the pre-economic effects in 10 identified performance areas, with three core areas: teaching, patient care and research
    corecore