30 research outputs found

    Antitumor potential of the myotoxin BthTX-I from Bothrops jararacussu snake venom: evaluation of cell cycle alterations and death mechanisms induced in tumor cell lines

    Get PDF
    Abstract\ud \ud Background\ud Phospholipases A2 (PLA2s) are abundant components of snake venoms that have been extensively studied due to their pharmacological and pathophysiological effects on living organisms. This study aimed to assess the antitumor potential of BthTX-I, a basic myotoxic PLA2 isolated from Bothrops jararacussu venom, by evaluating in vitro processes of cytotoxicity, modulation of the cell cycle and induction of apoptosis in human (HL-60 and HepG2) and murine (PC-12 and B16F10) tumor cell lines.\ud \ud \ud Methods\ud The cytotoxic effects of BthTX-I were evaluated on the tumor cell lines HL-60 (promyelocytic leukemia), HepG2 (human hepatocellular carcinoma), PC-12 (murine pheochromocytoma) and B16F10 (murine melanoma) using the MTT method. Flow cytometry technique was used for the analysis of cell cycle alterations and death mechanisms (apoptosis and/or necrosis) induced in tumor cells after treatment with BthTX-I.\ud \ud \ud Results\ud It was observed that BthTX-I was cytotoxic to all evaluated tumor cell lines, reducing their viability in 40 to 50 %. The myotoxin showed modulating effects on the cell cycle of PC-12 and B16F10 cells, promoting delay in the G0/G1 phase. Additionally, flow cytometry analysis indicated cell death mainly by apoptosis. B16F10 was more susceptible to the effects of BthTX-I, with ~40 % of the cells analyzed in apoptosis, followed by HepG2 (~35 %), PC-12 (~25 %) and HL-60 (~4 %).\ud \ud \ud Conclusions\ud These results suggest that BthTX-I presents antitumor properties that may be useful for developing new therapeutic strategies against cancer.The authors would like to thank the financial support provided by the State\ud of São Paulo Research Foundation (FAPESP, grants n. 2010/03243-43 and\ud 2011/23236-4), the Coordination for the Improvement of Higher Education\ud Personnel (CAPES) and the National Council for Scientific and Technological\ud Development (CNPq process n. 476932/2012-2). We are also grateful to\ud Fabiana Rosseto Morais, from FCFRP-USP, for the technical assistance in the\ud flow cytometry analyses. Thanks are also due to the Center for the Study of\ud Venoms and Venomous Animals (CEVAP) of UNESP for enabling the publication\ud of this special collection (CNPq process 469660/2014-7)

    Snake venom L-amino acid oxidases: an overview on their antitumor effects

    Get PDF
    Abstract The L-amino acid oxidases (LAAOs) constitute a major component of snake venoms and have been widely studied due to their widespread presence and various effects, such as apoptosis induction, cytotoxicity, induction and/or inhibition of platelet aggregation, hemorrhage, hemolysis, edema, as well as antimicrobial, antiparasitic and anti-HIV activities. The isolated and characterized snake venom LAAOs have become important research targets due to their potential biotechnological applications in pursuit for new drugs of interest in the scientific and medical fields. The current study discusses the antitumor effects of snake venom LAAOs described in the literature to date, highlighting the mechanisms of apoptosis induction proposed for this class of proteins

    Kinetic investigations and stability studies of two Bothrops L-amino acid oxidases

    No full text
    Abstract Background L-amino acid oxidases isolated from snake venoms (SV-LAAOs) are enzymes that have great therapeutic potential and are currently being investigated as tools for developing new strategies to treat various diseases, including cancer and bacterial infections. The main objective of this study was to make a brief evaluation of the enzymatic stability of two Bothrops LAAOs, one isolated from Bothrops jararacussu (BjussuLAAO-II) and the other from Bothrops moojeni (BmooLAAO-I) venoms. Methods and results The enzymatic activity and stability of both LAAOs were evaluated by microplate colorimetric assays, for which BjussuLAAO-II and BmooLAAO-I were incubated with different L-amino acid substrates, in the presence of different ions, and at different pH ranges and temperatures. BjussuLAAO-II and BmooLAAO-I demonstrated higher affinity for hydrophobic amino acids, such as Phe and Leu. The two enzymes showed high enzymatic activity in a wide temperature range, from 25 to 75 °C, and presented optimum pH around 7.0. Additionally, Zn2+, Al3+, Cu2+ and Ni2+ ions negatively modulated the enzymatic activity of both LAAOs. As to stability, BjussuLAAO-II and BmooLAAO-I showed high enzymatic activity for 42 days stored at 4 °C in neutral pH solution. Moreover, the glycan portions of both LAAOs were analyzed by capillary electrophoresis, which revealed that BjussuLAAO-II presented two main glycan portions with relative masses of 7.78 and 8.13 CGU, while BmooLAAO-I showed three portions of 7.58, 7.94 and 8.37 CGU. Conclusions Our results showed that, when stored properly, BjussuLAAO-II and BmooLAAO-I present enzymatic stability over a long time period, which is very important to allow the use of these enzymes in pharmacological studies of great impact in the medical field

    Cytotoxic and inflammatory potential of a phospholipase A2 from Bothrops jararaca snake venom

    No full text
    Abstract Background Snake venom phospholipases A2 (PLA2s) have been reported to induce myotoxic, neurotoxic, hemolytic, edematogenic, cytotoxic and proinflammatory effects. This work aimed at the isolation and functional characterization of a PLA2 isolated from Bothrops jararaca venom, named BJ-PLA2-I. Methods and Results For its purification, three consecutive chromatographic steps were used (Sephacryl S-200, Source 15Q and Mono Q 5/50 GL). BJ-PLA2-I showed acidic characteristics, with pI~ 4.4 and molecular mass of 14.2 kDa. Sequencing resulted in 60 amino acid residues that showed high similarity to other Bothrops PLA2s, including 100% identity with BJ-PLA2, an Asp49 PLA2 previously isolated from B. jararaca venom. Being an Asp49 PLA2, BJ-PLA2-I showed high catalytic activity, and also inhibitory effects on the ADP-induced platelet aggregation. Its inflammatory characterization showed that BJ-PLA2-I was able to promote leukocyte migration in mice at different concentrations (5, 10 and 20 μg/mL) and also at different response periods (2, 4 and 24 h), mainly by stimulating neutrophil infiltration. Furthermore, increased levels of total proteins, IL-6, IL-1β and PGE2 were observed in the inflammatory exudate induced by BJ-PLA2-I, while nitric oxide, TNF-α, IL-10 and LTB4 levels were not significantly altered. This toxin was also evaluated for its cytotoxic potential on normal (PBMC) and tumor cell lines (HL-60 and HepG2). Overall, BJ-PLA2-I (2.5–160 μg/mL) promoted low cytotoxicity, with cell viabilities mostly varying between 70 and 80% and significant values obtained for HL-60 and PBMC only at the highest concentrations of the toxin evaluated. Conclusions BJ-PLA2-I was characterized as an acidic Asp49 PLA2 that induces acute local inflammation and low cytotoxicity. These results should contribute to elucidate the action mechanisms of snake venom PLA2s

    Evaluating the microbicidal, antiparasitic and antitumor effects of CR-LAAO from Calloselasma rhodostoma venom

    No full text
    CR-LAAO is an l-amino acid oxidase from Calloselasma rhodostoma snake venom that has been broadly studied regarding its structural and biochemical characteristics, however, few studies have investigated its pharmacological effects. The present study aimed at the evaluation of the biotechnological potential of CR-LAAO by determining its bactericidal, antifungal, leishmanicidal and trypanocidal activity, as well as its cytotoxicity on human tumor and non-tumor cell lines. After 24h of preincubation, CR-LAAO showed bactericidal effects against both Staphylococcus aureus (MIC 0.78μg/mL) and Escherichia coli (MIC 31.25μg/mL) strains, inducing dismantle of bacterial cell walls. After 6h of preincubation with Candida albicans, CR-LAAO was able to inhibit 80% of the yeast growth, and it also showed cytotoxic activity on Leishmania species and Trypanosoma cruzi. Additionally, CR-LAAO showed high cytotoxicity on HepG2 and HL-60 tumor cells (IC50 10.78 and 1.7μg/mL), with lower effects on human mononuclear cells (PBMC). The cytotoxic effects of CR-LAAO were significantly inhibited in the presence of catalase, which suggests the involvement of hydrogen peroxide in its mechanisms of toxicity. Therefore, CR-LAAO showed promising pharmacological effects, and these results provide important information for the development of therapeutic strategies with directed action, such as more effective antimicrobial agents
    corecore