
Costa et al. Journal of Venomous Animals and Toxins including Tropical Diseases 2014, 20:23
http://www.jvat.org/content/20/1/23

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector
REVIEW Open Access
Snake venom L-amino acid oxidases: an overview
on their antitumor effects
Tássia R Costa1, Sandra M Burin1, Danilo L Menaldo1, Fabíola A de Castro1 and Suely V Sampaio1,2*
Abstract

The L-amino acid oxidases (LAAOs) constitute a major component of snake venoms and have been widely studied
due to their widespread presence and various effects, such as apoptosis induction, cytotoxicity, induction and/or
inhibition of platelet aggregation, hemorrhage, hemolysis, edema, as well as antimicrobial, antiparasitic and anti-HIV
activities. The isolated and characterized snake venom LAAOs have become important research targets due to their
potential biotechnological applications in pursuit for new drugs of interest in the scientific and medical fields. The
current study discusses the antitumor effects of snake venom LAAOs described in the literature to date, highlighting
the mechanisms of apoptosis induction proposed for this class of proteins.
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Introduction
The L-amino acid oxidases (LAAOs, EC 1.4.3.2) are fla-
voenzymes found in such diverse organisms as bacteria,
fungi, algae, fish, snails as well as venoms of snakes from
the families Viperidae, Crotalidae and Elapidae [1-6].
Almost all LAAOs described to date are flavoproteins

of dimeric structure, with each subunit presenting a
non-covalent bond with flavin mononucleotide (FMN)
or flavin adenine dinucleotide (FAD). The latter co-
factor is commonly found in snake venom L-amino acid
oxidases (SV-LAAOs). Flavins present in LAAOs are re-
sponsible for the characteristic yellow color of many
snake venoms and contribute to their toxicity because
of the oxidative stress that results from the production
of H2O2 [7]. This feature allows the classification of
LAAOs as FAD-dependent oxidoreductases. They are
capable of catalyzing the stereospecific oxidative de-
amination of L-amino acid substrates to α-keto acids.
The catalytic cycle, as shown in Figure 1, starts with a
reduction half-reaction involving the conversion of FAD
to FADH2 and the concomitant oxidation of the amino
acid into an imino acid, which subsequently undergoes a
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non-enzymatic hydrolysis releasing α-keto acid and am-
monia. Another half-reaction completes the cycle with
the oxidation of FADH2 by molecular oxygen, producing
hydrogen peroxide [8-13].
LAAOs from various sources have been isolated and

characterized biochemically, enzymatically and bio-
logically, with the snake venom L-amino acid oxidases
(SV-LAAOs) being the most studied enzymes of this
family of proteins [2].
In general, SV-LAAOs are homodimers with molecu-

lar masses ranging from 120 to 150 kDa in their native
form and 50 to 70 kDa in their monomeric forms, and
isoelectric point (pI) between 4.4 and 8.12 [2,14]. Inter-
estingly, acidic, neutral and basic forms of SV-LAAOs
can coexist in the same snake venom and may present
distinct pharmacological properties [15].
Until the 1990s, the studies of SV-LAAOs mainly fo-

cused on their physicochemical and enzymatic activities
whereas more recent studies have shown that SV-LAAOs
present numerous biological and pharmacological effects,
such as induction of apoptosis, cytotoxicity, inhibition and
induction of platelet aggregation, hemorrhage, hemolysis,
edema, as well as microbicidal, antiparasitic and anti-HIV
activities [2,7,12,16-21].
Although several SV-LAAOs have been characterized

with diverse biological functions, the mechanisms by
which these enzymes exert their activities are not fully
understood. It is believed that the biological effects of
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Figure 1 Representation of the reaction catalyzed by L-amino acid oxidases.
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SV-LAAOs is, at least partially, due to the hydrogen per-
oxide generated during the enzymatic reaction, since the
presence of catalase, an agent that degrades H2O2, can
inhibit the action of these enzymes [2].
Nowadays, there is great interest in the clinical use of

substances from plants and animals for the treatment of
diseases, leading to a search for compounds with modu-
lating actions on the carcinogen metabolism, induction
of DNA repair systems and activation or suppression of
the cell cycle and apoptosis [22]. Apoptotic processes
and cell damage are some of the action mechanisms pro-
posed for many SV-LAAOs, suggesting that these en-
zymes could be used as models for the development of
more effective chemotherapeutic and other antitumor
agents [2,13,23,24].
Therefore, this review aims to discuss the cytotoxic ef-

fects and the induction of apoptosis in tumor cells by
SV-LAAOs. This analysis can serve as an important tool
for future research studies on L-amino acid oxidases
from snake venoms with antitumor activity.

Review
Antitumor potential of SV-LAAOs
Numerous studies of snake venoms show that SV-
LAAOs are capable of promoting cytotoxicity in dif-
ferent cell lines, such as S180 (murine sarcoma 180
tumor), SKBR-3 (breast adenocarcinoma), Jurkat (human
acute T cell leukemia), EAT (Ehrlich ascites tumor),
B16F10 (murine melanoma), PC12 (rat adrenal gland
pheochromocytoma), as well as in non-tumor cells
(lymphocytes and macrophages) [7]. It is noteworthy
that the damage in normal cells is usually negligible
when compared to the damage caused in tumor cells
[20,25-27]. Although the cytotoxicity mechanisms of
SV-LAAOs have not been fully clarified, it is known
that lipids present in cell membranes can be damaged
by reactive oxygen species (ROS) [28,29]. Considering
that membranes of tumor cells present higher concen-
trations of lipids than normal cells, it is speculated that
the hydrogen peroxide produced by LAAOs exerts direct
action on the membrane of tumor cells, with lower tox-
icity on normal cells [30].
Araki et al. [31] reported for the first time the apop-
tosis in vascular endothelial cells caused by hemorrhagic
venoms. Shortly afterwards, two other groups of re-
searchers showed that LAAOs from hemorrhagic venoms
were primarily responsible for the apoptotic effect on
these endothelial cells [32,33]. Since then, many studies
have described the apoptotic effect of LAAOs in different
cell lines, suggesting this enzyme class is directly linked to
the cytotoxic action of venoms [11,13,14,27,33,34].
The effects of SV-LAAOs can be studied by analyzing

the cell cycle, which is a set of processes through which
a cell passes during its division. This process is divided
into two phases: interphase and mitosis, with the inter-
phase being subdivided into G0, G1, S and G2 [35,36].
During the cell cycle, certain stops (checkpoints) occur
in order to verify the conditions of the genetic material
at the time of cell division; these verifications involve
multiple cellular repair proteins (CDK, CKI; CHK), which
control the inhibition or the progression of the cycle by
different pathways [37]. The generated DNA damage in
G1, S or G2 must be repaired as it is the last possible
defense against damaged DNA, and if not repaired, the
cell proceeds to mitosis and shall initiate the production
of defective cells (tumor cells) or undergo cell death by
apoptosis [35,36].
The term apoptosis has been proposed by Kerr et al.

[38] in 1992 to describe the pathway of programmed cell
death during cell development, which plays an important
role in the development and maintenance of higher or-
ganisms. This process is triggered by DNA damage
caused by physical, chemical and/or biological agents,
and can be defined by various morphological and biochem-
ical characteristics, such as the exposure of phosphatidyl-
serine to the outer leaflet of the plasma membrane, nuclear
condensation and the cleavage of chromatin in oligonu-
cleosomal fragments [34,39,40].
Once unleashed, the phenomenon of apoptosis acti-

vates molecular events that culminate in the activation
of caspases, which are responsible for cell dismantling
and death. The process of apoptosis can occur by two
major pathways: the intrinsic (mitochondrial) and extrinsic
(death receptor). The intrinsic pathway can be triggered by
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the action of different intracellular stress signals, such as ir-
radiation, chemotherapeutic agents, viruses, bacteria and
absence of cell growth factors, which converge on the
mitochondria to induce the translocation of cytochrome c
and SMAC (second mitochondria-derived activator of cas-
pases) from these organelles to the cytosol, resulting in the
presence of APAF-1 and activation of caspase-9. The ex-
trinsic pathway is initiated by the binding of death recep-
tors (DR) – such as Fas/CD95, TNFRI, DR3, DR4, DR5
and DR6 – to their respective ligands. The existing DR are
cell surface molecules that have a cysteine-rich extracellu-
lar domain and an intracellular domain denominated DD
(death domain) [41,42].
The binding of Fas associated with DD (FADD) allows

the recruitment of pro-caspase 8 to form the DISC
(death-inducing signaling complex). Pro-caspase 8 is
self-cleaved and transformed into active caspase 8, and
then released into the cytoplasm, where it may act dir-
ectly on the activation of caspase 3 (executioner phase
of apoptosis), or act in the cleavage of Bid molecules
that will reach the mitochondria, inducing the release of
cytochrome c and SMAC. The cleavage of Bid repre-
sents the connection between the extrinsic and intrinsic
pathways of apoptosis [41,43].
The mitochondrial pathway is regulated by members

of the Bcl-2 family, which are cytoplasmic proteins cap-
able of integrating signals of survival or cell death gener-
ated in the intra- and extracellular medium [44]. This
family is divided into two classes: anti-apoptotic proteins
(Bcl-2, Bcl-xL, Bcl-w, A1 and Mcl-1), whose function is
to protect cells from death, and pro-apoptotic proteins
(Bax, Bak, Bad, Bid, Bmf etc.) that sensitize or lead cells
to apoptosis [44]. The executioner pathway of apoptosis
is common to both initiating pathways and is characterized
by the activation of effector caspases, namely caspase-3, −6
and −7, and the cell-dismantling characteristic of apoptosis
[45-47]. The balance of the interactions between pro- and
anti-apoptotic proteins may define the occurrence of cell
death.
Numerous studies have reported that apoptotic pro-

cesses induced by LAAOs are partially explained by the
generation of hydrogen peroxide (H2O2), a reactive oxy-
gen species (ROS) that accumulates on the surface of
cell membranes. It is widely accepted that increasing
ROS concentrations promotes mitochondrial derange-
ments that cause cell death [2,7,11,13,23,27,32-34,48,49].
In this context, several studies with SV-LAAOs evalu-
ated their cytotoxic effects in the presence of catalase
(known for its ability to degrade H2O2 to H2O and O2),
revealing that in fact the toxic action of SV-LAAOs is
practically annulled by this agent [2,7,50].
To evaluate the cytotoxic activity of SV-LAAOs, most

studies make use of the colorimetric method for cyto-
toxicity proposed by Mosmann [51]. Ahn et al. [25]
showed that the LAAO isolated from Ophiophagus hannah
(king cobra) venom is cytotoxic for stomach cancer cells
(SNU-1). LAAOs from Agkistrodon acutus (ACTX-6) and
Bungarus fasciatus (BF-LAAO) showed cytotoxic effects
on A549 cells (lung adenocarcinoma), with ACTX-6 pre-
senting an IC50 of 20 μg/mL [23,49]. Alves et al. [27]
assessed the cytotoxic effects of an LAAO isolated from
Bothrops atrox venom (named BatroxLAAO) on various
tumor cell lines, such as HL-60 (IC50 50 μg/mL), PC12,
B16F10 and JURKAT (IC50 of 25 μg/mL for the three cell
lines). Also, in the presence of catalase (150 U/mL),
BatroxLAAO did not induce significant cell death on any
of the tumor cell lines tested [13].
One study revealed the toxin Bl-LAAO from Bothrops

leucurus venom presented a cytotoxic effect on the tumor
cell lines MKN-45 (stomach cancer), RKO (colorectal
cancer) and LL-24 (human fibroblasts), whereas around
25% of this cytotoxicity was inhibited in the presence of
catalase (100 μg) [19].
Bregge-Silva et al. [52] evaluated the cytotoxic effect

of an LAAO (denominated LmLAAO) isolated from
Lachesis muta snake venom on AGS (gastric adeno-
carcinoma) and MCF-7 (breast tumor) cells, with IC50 of
22.7 μg/mL and 1.41 μg/mL, respectively. The catalase
(0.1 mg/mL) completely abolished the cytotoxic effects of
LmLAAO on MCF-7 tumor cells.
Several SV-LAAOs isolated from different snake venoms

have been described as able to induce cell death in different
cell lines [14,20,53,54]. A study with the LAAO isolated
from Agkistrodon halys snake venom demonstrated the
apoptotic action of this protein on murine lymphoblastic
leukemia cells (L1210) by quantitatively analyzing the
DNA fragmentation after treatment of cells with the pro-
tein. Twenty-four hours after treatment, death by necrosis
was observed, suggesting that higher amounts of H2O2

were released during the enzymatic reaction. When cells
were treated concomitantly with catalase, cell viability was
not fully restored, indicating that the apoptotic activity of
LAAOs cannot be explained completely by the generation
of hydrogen peroxide [32].
Torii et al. [33] evaluated the apoptotic effects of

Apoxin I, an LAAO from Crotalus atrox snake venom.
Authors showed that Apoxin I at 10 μg/mL of this venom
induced condensation and fragmentation of chromatin in
human umbilical endothelial cells, HL-60, A2780 (human
ovarian carcinoma) and NK-3 (rat endothelial cells). At a
concentration of 2.5 μg/mL, Apoxin I induced oligonucleo-
somal DNA fragmentation in HL-60; however, at lower
concentrations, the toxin did not induce apoptosis in this
lineage. This study also showed that the induction of apop-
tosis was completely abolished when the LAAO was inacti-
vated by changes in temperature (70°C) or in the presence
of catalase. It was also found that in the presence of a
membrane antioxidant (trolox), the Apoxin I was not able
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to induce apoptosis in the tested cell lines. These findings
suggest that the apoptotic effect caused by Apoxin I is re-
lated to the catalytic activity of the enzyme, which is re-
sponsible for the production and release of H2O2 that may
be related to the oxidation of the cell membrane [33].
ACL LAO, isolated from Agkistrodon contortrix lati-

cinctus venom, was also capable of inducing apoptosis in
HL-60 cells. Twenty-four hours after treatment with
25 μg/mL of the toxin, a typical pattern of DNA fragmen-
tation in apoptotic cells was observed [14]. Low concen-
trations of another protein of this class, the VB-LAAO
from Vipera berus berus venom, induced apoptosis in
Table 1 Summary of some SV-LAAOs and the tumor cell lines

Snake species LAAO Tumor ce

Agkistrodon acutus ACTX-6 A549

ACTX-8 HeLa

Agkistrodon contortrix laticinctus ACL LAO HL-60

Agkistrodon halys L1210

MOLT-4

HL-60

Agkistrodon halys pallas A549

Bothrops atrox BatroxLAAO HL-60

PC12

B16F10

Jurkat

Bothrops moojeni BmooLAAO-I HL-60 and

Bothrops pirajai BpirLAAO-I S180

SKBR3

HL-60

HL-60.Bcr-

EAT

Bungarus fasciatus BF-LAAO A549

Calloselasma rhodostoma CR-LAAO Jurkat

Crotalus atrox Apoxin-I HL-60

A2780

HUVEC

KN-3

Eristocophis macmahoni LNV-LAO MM6

Ophiophagus hannah SNU-1

B16F10

MCF-7

A549

Vipera berus berus HeLa and
K562 and HeLa tumor cell lines, whereas at higher con-
centrations, this enzyme also induced necrosis in K562
cells [55].
To examine the apoptotic and necrotic effects induced

by SV-LAAOs, two flow cytometry methods have been
employed: Annexin V FITC and HFS (hypotonic fluores-
cent solution, containing 50 μg/mL of propidium iodide
in 0.1% sodium citrate plus 1.0% Triton X-100). Cells in
early apoptosis are positive for annexin V and negative
for propidium iodide (PI), which indicates phosphatidyl-
serine externalization and membrane integrity. The as-
sessment of DNA content detected by the HFS method
in which they were tested

ll lines Methodology References

MTT [23]

MTT, DNA fragmentation [57]

Activation of caspases 3 and 9

DNA fragmentation [14]

DNA fragmentation [32]

DNA fragmentation [59]

MTT [13,27]

Annexin V

Activation of caspases

EAT MTT and DNA fragmentation [60]

MTT [20,26]

DNA fragmentation

HFS

Activation of caspases 3, 8 and 9

Abl

[49]

[34]

DNA fragmentation [33,54]

DNA fragmentation [53]

MTT [25,61]

DNA fragmentation

Activation of caspases

K562 DNA fragmentation [55]
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considers the incorporation of PI in isolated nuclei com-
patible with the diploid content, whereas apoptotic nu-
clei appear in the hypodiploid region of the histogram
due to the fragmentation of the nucleus or the greater
condensation of chromatin [56].
The apoptotic and necrotic effects of BatroxLAAO

were analyzed by flow cytometry. This toxin induced cell
death processes in different tumor cell lines, such as
JURKAT, B16F10, PC12 and HL-60. The B16F10 and
PC12 cell lines presented death by apoptosis (AV+),
while JURKAT cells displayed death by necrosis (27%
necrotic cells) [27]. In HL-60, 50 μg/mL BatroxLAAO
showed apoptotic effect in 28.6% and necrotic effect in
14.2% of cells, maintaining a cell viability of approxi-
mately 57% [13]. These data corroborate the study by
Ande et al. [34], which evaluated the effects of CR-
LAAO from Calloselasma rhodostoma venom on the
viability of JURKAT leukemia cells and the influence of
catalase on apoptosis induction. CR-LAAO induced ne-
crosis (PI+) in JURKAT cells in a dose-dependent man-
ner. However, in the presence of catalase, the number of
necrotic cells was drastically reduced, and a correspond-
ing increase in the number of apoptotic cells (AV+) was
observed, probably related to the catalase treatment.
Other studies have demonstrated the induction of

apoptosis promoted by SV-LAAOs by the increased per-
centages of hypodiploid nuclei in tumor cell lines. Wei
et al. [49] showed that after 12 hours of treatment with
BF-LAAO, the concentrations of 0.03, 0.1, 0.3, 1.0 and
3.0 μg/mL induced respective apoptosis proportions of
3.7, 6.6, 14.0, 32.4 and 41.2% in A549 cells. Burin et al.
[20] conducted tests to assess the effect of BpirLAAO
(from Bothrops pirajai venom) on HL-60 and HL-60.
Bcr-Abl tumor cell lines. Their results showed a dose-
dependent increase in the percentage of hypodiploid nu-
clei 18 hours after treatment.
Furthermore, to assess whether SV-LAAOs induced

apoptosis by the intrinsic (mitochondrial) or extrinsic
(death receptor) pathway, some studies evaluated the de-
tection of caspases 3, 8 and 9. Alves et al. [27] reported
the activation of caspases 3 and 9 24 hours after treat-
ment of PC12, HL-60, JURKAT and B16F10 cell lines
with BatroxLAAO. In relation to BpirLAAO, Burin et al.
[20] observed activation of caspases 3, 8 and 9 18 hours
after treatment of HL-60 and HL-60.Bcr-Abl cell lines
with BpirLAAO. These results suggest that SV-LAAOs
may act in the activation of the intrinsic and extrinsic
pathways of apoptosis.
Currently, molecular biology assays such as the

combination of reverse transcription with quantitative
real-time polymerase chain reaction (RT-qPCR) have
contributed much to the study of the apoptotic po-
tential of SV-LAAOs. The detection of the expression
of pro- and anti-apoptotic genes assists in determining
the apoptosis pathway (intrinsic or extrinsic) activated by
these enzymes. The LAAO from Agkistrodon acutus
venom (named ACTX-8) induced apoptosis in HeLa cells
mediated by the mitochondrial pathway, which was de-
tected by verifying the translocation of Bax and Bad from
the cytosol to the mitochondria [57].
Few studies have been conducted to assess the effects

of SV-LAAOs on the cell cycle progression. de Melo
Alves-Paiva et al. [13] evaluated the cycle modulation
and the induction of apoptosis in HL-60 cells treated
with BatroxLAAO, showing that this toxin induced a
delay in the G0/G1 phase. The authors suggested that
this delay may prevent the initiation of DNA synthesis
and, consequently, the replication of tumor cells, which
could represent another possible mechanism by which
SV-LAAOs display their antitumor effects. Similar re-
sults were observed when LAAO was isolated from
Agkistrodon acutus venom (ACTX-6), which promoted a
15% increase of A549 cells in the G0/G1 phase com-
pared to the untreated group [23]. K562 and U937 cells
presented that same delay profile in G1 and decreased
number of cells in the G2/M phase after treatment with
drCT-I isolated from Daboia russelli russelli venom [58].

Conclusions
Apoptosis, cell damage and alteration in cell cycle pro-
cesses may be induced by SV-LAAOs in different tumor
cell lines, which emphasizes the antitumor potential of
this class of toxins. Some of these SV-LAAOs and the
tumor cells in which they were tested are summarized in
Table 1.
The mechanisms by which SV-LAAOs induce apop-

tosis are still not known, but studies suggest that the
H2O2 produced during the enzymatic reaction, the acti-
vation of caspases and/or the interaction of LAAOs with
membrane receptors may be involved in this cell death
process.
Conducting new studies to elucidate the action mecha-

nisms of SV-LAAOs are necessary to develop novel
therapeutic strategies with more directed actions, which
would result in more effective chemotherapeutic and an-
titumor agents.
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