231 research outputs found
Compact binary waveform recovery from the cross-correlated data of two detectors by matched filtering with spinning templates
We investigate whether the recovery chances of highly spinning waveforms by matched filtering with randomly chosen spinning waveforms generated with the LAL package are improved by a cross-correlation of the simulated output of the L1 and H1 LIGO detectors. We find that a properly defined correlated overlap improves the mass estimates and enhaces the recovery of spin angles
Extending the PyCBC search for gravitational waves from compact binary mergers to a global network
The worldwide advanced gravitational-wave (GW) detector network has so far primarily consisted of the two Advanced LIGO observatories at Hanford and Livingston, with Advanced Virgo joining the 2016-7 O2 observation run at a relatively late stage. However Virgo has been observing alongside the LIGO detectors since the start of the O3 run; in the near future, the KAGRA detector will join the global network and a further LIGO detector in India is under construction. Gravitational-wave search methods would therefore benefit from the ability to analyse data from an arbitrary network of detectors. In this paper we extend the PyCBC offline compact binary coalescence (CBC) search analysis to three or more detectors, and describe resulting updates to the coincident search and event ranking statistic. For a three-detector network, our improved multi-detector search finds 20% more simulated signals at fixed false alarm rate in idealized colored Gaussian noise, and up to 40% more in real data, compared to the two-detector analysis previously used during O2
GW150914: First Results from the Search for Binary Black Hole Coalescence with Advanced LIGO
On September 14, 2015, at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015 GW150914 was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.1 sigma
Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube
Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory
A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run
High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube
Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914
In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto- mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 days of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10° in phase across the relevant frequency band, 20 Hz to 1 kHz
Observing gravitational-wave transient GW150914 with minimal assumptions
The gravitational-wave signal GW150914 was first identified on September 14, 2015, by searches for short-duration gravitational-wave transients. These searches identify time-correlated transients in multiple detectors with minimal assumptions about the signal morphology, allowing them to be sensitive to gravitational waves emitted by a wide range of sources including binary black hole mergers. Over the observational period from September 12 to October 20, 2015, these transient searches were sensitive to binary black hole mergers similar to GW150914 to an average distance of ∼600 Mpc. In this paper, we describe the analyses that first detected GW150914 as well as the parameter estimation and waveform reconstruction techniques that initially identified GW150914 as the merger of two black holes. We find that the reconstructed waveform is consistent with the signal from a binary black hole merger with a chirp mass of ∼30 M and a total mass before merger of ∼70 M in the detector frame
- …
