6 research outputs found

    The Oxime Ethers with Heterocyclic, Alicyclic and Aromatic Moiety as Potential Anti-Cancer Agents

    No full text
    Chemotherapy is one of the most commonly used methods of cancer disease treatment. Due to the acquisition of drug resistance and the possibility of cancer recurrence, there is an urgent need to search for new molecules that would be more effective in destroying cancer cells. In this study, 1-(benzofuran-2-yl)ethan-1-one oxime and 26 oxime ethers containing heterocyclic, alicyclic or aromatic moiety were screened for their cytotoxicity against HeLa cancer cell line. The most promising derivatives with potential antitumor activity were 2-(cyclohexylideneaminoxy)acetic acid (18) and (E)-acetophenone O-2-morpholinoethyl oxime (22), which reduced the viability of HeLa cells below 20% of control at concentrations of 100–250 μg/mL. Some oxime ethers, namely thiazole and benzothiophene derivatives (24–27), also reduced HeLa cell viability at similar concentrations but with lower efficiency. Further cytotoxicity evaluation confirmed the specific toxicity of (E)-acetophenone O-2-morpholinoethyl oxime (22) against A-549, Caco-2, and HeLa cancer cells, with an EC50 around 7 μg/mL (30 μM). The most potent and specific compound was (E)-1-(benzothiophene-2-yl)ethanone O-4-methoxybenzyl oxime (27), which was selective for Caco-2 (with EC50 116 μg/mL) and HeLa (with EC50 28 μg/mL) cells. Considering the bioavailability parameters, the tested derivatives meet the criteria for good absorption and permeation. The presented results allow us to conclude that oxime ethers deserve more scientific attention and further research on their chemotherapeutic activity

    11β-Hydroxysteroid Dehydrogenase Type 1 as a Potential Treatment Target in Cardiovascular Diseases

    No full text
    Glucocorticoids (GCs) belong to the group of steroid hormones. Their representative in humans is cortisol. GCs are involved in most physiological processes of the body and play a significant role in important biological processes, including reproduction, growth, immune responses, metabolism, maintenance of water and electrolyte balance, functioning of the central nervous system and the cardiovascular system. The availability of cortisol to the glucocorticoid receptor is locally controlled by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Evidence of changes in intracellular GC metabolism in the pathogenesis of obesity, metabolic syndrome (MetS) and cardiovascular complications highlights the role of selective 11β-HSD1 inhibition in the pharmacotherapy of these diseases. This paper discusses the role of 11β-HSD1 in MetS and its cardiovascular complications and the importance of selective inhibition of 11β-HSD1

    Novel 2-(Adamantan-1-ylamino)Thiazol-4(5H)-One Derivatives and Their Inhibitory Activity towards 11β-HSD1—Synthesis, Molecular Docking and In Vitro Studies

    No full text
    A common mechanism in which glucocorticoids participate is suggested in the pathogenesis of such metabolic diseases as obesity, metabolic syndrome, or Cushing’s syndrome. The enzyme involved in the control of the availability of cortisol, the active form of the glucocorticoid for the glucocorticoid receptor, is 11β-HSD1. Inhibition of 11β-HSD1 activity may bring beneficial results for the alleviation of the course of metabolic diseases such as metabolic syndrome, Cushing’s syndrome or type 2 diabetes. In this work, we obtained 10 novel 2-(adamantan-1-ylamino)thiazol-4(5H)-one derivatives containing different substituents at C-5 of thiazole ring and tested their activity towards inhibition of two 11β-HSD isoforms. For most of them, over 50% inhibition of 11β-HSD1 and less than 45% inhibition of 11β-HSD2 activity at the concentration of 10 µM was observed. The binding energies found during docking simulations for 11β-HSD1 correctly reproduced the experimental IC50 values for analyzed compounds. The most active compound 2-(adamantan-1-ylamino)-1-thia-3-azaspiro[4.5]dec-2-en-4-one (3i) inhibits the activity of isoform 1 by 82.82%. This value is comparable to the known inhibitor-carbenoxolone. The IC50 value is twice the value determined by us for carbenoxolone, however inhibition of the enzyme isoform 2 to a lesser extent makes it an excellent material for further tests

    Synthesis of Novel 2-(Cyclopentylamino)thiazol-4(5<i>H</i>)-one Derivatives with Potential Anticancer, Antioxidant, and 11β-HSD Inhibitory Activities

    No full text
    In this study, a series of nine new 2-(cyclopentylamino)thiazol-4(5H)-one derivatives were synthesized, and their anticancer, antioxidant, and 11β-hydroxysteroid dehydrogenase (11β-HSD) inhibitory activities were tested. Anticancer activity has been assessed using the MTS (MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay against human colon carcinoma (Caco-2), human pancreatic carcinoma (PANC-1), glioma (U-118 MG), human breast carcinoma (MDA-MB-231), and skin melanoma (SK-MEL-30) cancer cell lines. Cell viability reductions, especially in the case of Caco-2, MDA-MB-231, and SK-MEL-30 lines, were observed for most compounds. In addition, the redox status was investigated and oxidative, but nitrosative stress was not noted at a concentration of 500 µM compounds tested. At the same time, a low level of reduced glutathione was observed in all cell lines when treated with compound 3g (5-(4-bromophenyl)-2-(cyclopentylamino)thiazol-4(5H)-one) that most inhibited tumor cell proliferation. However, the most interesting results were obtained in the study of inhibitory activity towards two 11β-HSD isoforms. Many compounds at a concentration of 10 µM showed significant inhibitory activity against 11β-HSD1 (11β-hydroxysteroid dehydrogenase type 1). The compound 3h (2-(cyclopentylamino)-1-thia-3-azaspiro[4.5]dec-2-en-4-one) showed the strongest 11β-HSD1 inhibitory effect (IC50 = 0.07 µM) and was more selective than carbenoxolone. Therefore, it was selected as a candidate for further research

    Sorting of Streptavidin Protein Coats on Phase-Separating Model Membranes

    Get PDF
    Heterogeneities in cell membranes due to the ordering of lipids and proteins are thought to play an important role in enabling protein and lipid trafficking throughout the secretory pathway and in maintaining cell polarization. Protein-coated vesicles provide a major mechanism for intracellular transport of select cargo, which may be sorted into lipid microdomains; however, the mechanisms and physical constraints for lipid sorting by protein coats are relatively unexplored. We studied the influence of membrane-tethered protein coats on the sorting, morphology, and phase behavior of liquid-ordered lipid domains in a model system of giant unilamellar vesicles composed of dioleoylphosphatidylcholine, sphingomyelin, and cholesterol. We created protein-coated membranes by forming giant unilamellar vesicles containing a small amount of biotinylated lipid, thereby creating binding sites for streptavidin and avidin proteins in solution. We found that individual tethered proteins colocalize with the liquid-disordered phase, whereas ordered protein domains on the membrane surface colocalize with the liquid-ordered phase. These observations may be explained by considering the thermodynamics of this coupled system, which maximizes its entropy by cosegregating ordered protein and lipid domains. In addition, protein ordering inhibits lipid domain rearrangement and modifies the morphology and miscibility transition temperature of the membrane, most dramatically near the critical point in the membrane phase diagram. This observation suggests that liquid-ordered domains are stabilized by contact with ordered protein domains; it also hints at an approach to the stabilization of lipid microdomains by cross-linked protein clusters or ordered protein coats
    corecore