57 research outputs found

    Searching for keV Sterile Neutrino Dark Matter with X-ray Microcalorimeter Sounding Rockets

    Full text link
    High-resolution X-ray spectrometers onboard suborbital sounding rockets can search for dark matter candidates that produce X-ray lines, such as decaying keV-scale sterile neutrinos. Even with exposure times and effective areas far smaller than XMM-Newton and Chandra observations, high-resolution, wide field-of-view observations with sounding rockets have competitive sensitivity to decaying sterile neutrinos. We analyze a subset of the 2011 observation by the X-ray Quantum Calorimeter instrument centered on Galactic coordinates l = 165, b = -5 with an effective exposure of 106 seconds, obtaining a limit on the sterile neutrino mixing angle of sin^2(2 theta) < 7.2e-10 at 95% CL for a 7 keV neutrino. Better sensitivity at the level of sin^2(2 theta) ~ 2.1e-11 at 95\% CL for a 7 keV neutrino is achievable with future 300-second observations of the galactic center by the Micro-X instrument, providing a definitive test of the sterile neutrino interpretation of the reported 3.56 keV excess from galaxy clusters.Comment: 13 pages, 13 figures, submitted to Ap

    A High Spectral Resolution Study of the Soft X-ray Background with the X-ray Quantum Calorimeter

    Full text link
    We present here a combined analysis of four high spectral resolution observations of the Diffuse X-ray Background (DXRB), made using the University of Wisconsin-Madison/Goddard Space Flight Center X-ray Quantum Calorimeter (XQC) sounding rocket payload. The observed spectra support the existence of a 0.1 \sim0.1~keV Local Hot Bubble and a 0.2 \sim0.2~keV Hot Halo, with discrepancies between repeated observations compatible with expected contributions of time-variable emission from Solar Wind Charge Exchange (SWCX). An additional component of 0.9 \sim0.9~keV emission observed only at low galactic latitudes can be consistently explained by unresolved dM stars.Comment: 21 pages, 6 figures, accepted for publication in Ap

    Does masting scale with plant size? High reproductive variability and low synchrony in small and unproductive individuals

    Get PDF
    Background and Aims In a range of plant species, the distribution of individual mean fecundity is skewed and dominated by a few highly fecund individuals. Larger plants produce greater seed crops, but the exact nature of the relationship between size and reproductive patterns is poorly understood. This is especially clear in plants that reproduce by exhibiting synchronized quasi-periodic variation in fruit production, a process called masting. Methods We investigated covariation of plant size and fecundity with individual-plant-level masting patterns and seed predation in 12 mast-seeding species: Pinus pinea, Astragalus scaphoides, Sorbus aucuparia, Quercus ilex, Q. humilis, Q. rubra, Q. alba, Q. montana, Chionochloa pallens, C. macra, Celmisia lyallii and Phormium tenax. Key Results Fecundity was non-linearly related to masting patterns. Small and unproductive plants frequently failed to produce any seeds, which elevated their annual variation and decreased synchrony. Above a low fecundity threshold, plants had similar variability and synchrony, regardless of their size and productivity. Conclusions Our study shows that within-species variation in masting patterns is correlated with variation in fecundity, which in turn is related to plant size. Low synchrony of low-fertility plants shows that the failure years were idiosyncratic to each small plant, which in turn implies that the small plants fail to reproduce because of plant-specific factors (e.g. internal resource limits). Thus, the behaviour of these sub-producers is apparently the result of trade-offs in resource allocation and environmental limits with which the small plants cannot cope. Plant size and especially fecundity and propensity for mast failure years play a major role in determining the variability and synchrony of reproduction in plants

    EXPRES. II. Searching for Planets Around Active Stars: A Case Study of HD 101501

    Full text link
    By controlling instrumental errors to below 10 cm/s, the EXtreme PREcision Spectrograph (EXPRES) allows for a more insightful study of photospheric velocities that can mask weak Keplerian signals. Gaussian Processes (GP) have become a standard tool for modeling correlated noise in radial velocity datasets. While GPs are constrained and motivated by physical properties of the star, in some cases they are still flexible enough to absorb unresolved Keplerian signals. We apply GP regression to EXPRES radial velocity measurements of the 3.5 Gyr old chromospherically active Sun-like star, HD 101501. We obtain tight constraints on the stellar rotation period and the evolution of spot distributions using 28 seasons of ground-based photometry, as well as recent TESSTESS data. Light curve inversion was carried out on both photometry datasets to reveal the spot distribution and spot evolution timescales on the star. We find that the >5> 5 m/s rms radial velocity variations in HD 101501 are well-modeled with a GP stellar activity model without planets, yielding a residual rms scatter of 45 cm/s. We carry out simulations, injecting and recovering signals with the GP framework, to demonstrate that high-cadence observations are required to use GPs most efficiently to detect low-mass planets around active stars like HD 101501. Sparse sampling prevents GPs from learning the correlated noise structure and can allow it to absorb prospective Keplerian signals. We quantify the moderate to high-cadence monitoring that provides the necessary information to disentangle photospheric features using GPs and to detect planets around active stars.Comment: 25 pages, 16 figures, accepted to A

    EXPRES IV: Two Additional Planets Orbiting ρ\rho Coronae Borealis Reveal Uncommon System Architecture

    Full text link
    Thousands of exoplanet detections have been made over the last twenty-five years using Doppler observations, transit photometry, direct imaging, and astrometry. Each of these methods is sensitive to different ranges of orbital separations and planetary radii (or masses). This makes it difficult to fully characterize exoplanet architectures and to place our solar system in context with the wealth of discoveries that have been made. Here, we use the EXtreme PREcision Spectrograph (EXPRES) to reveal planets in previously undetectable regions of the mass-period parameter space for the star ρ\rho Coronae Borealis. We add two new planets to the previously known system with one hot Jupiter in a 39-day orbit and a warm super-Neptune in a 102-day orbit. The new detections include a temperate Neptune planet (Msini20M{\sin{i}} \sim 20 M_\oplus) in a 281.4-day orbit and a hot super-Earth (Msini=3.7M{\sin{i}} = 3.7 M_\oplus) in a 12.95-day orbit. This result shows that details of planetary system architectures have been hiding just below our previous detection limits; this signals an exciting era for the next generation of extreme precision spectrographs.Comment: Accepted to AJ; 20 pages, 13 figures, 5 Table

    Measured Spin-Orbit Alignment of Ultra-Short Period Super-Earth 55 Cancri e

    Full text link
    A planet's orbital alignment places important constraints on how a planet formed and consequently evolved. The dominant formation pathway of ultra-short period planets (P<1P<1 day) is particularly mysterious as such planets most likely formed further out, and it is not well understood what drove their migration inwards to their current positions. Measuring the orbital alignment is difficult for smaller super-Earth/sub-Neptune planets, which give rise to smaller amplitude signals. Here we present radial velocities across two transits of 55 Cancri e, an ultra-short period Super-Earth, observed with the Extreme Precision Spectrograph (EXPRES). Using the classical Rossiter-McLaughlin (RM) method, we measure 55 Cnc e's sky-projected stellar spin-orbit alignment (i.e., the projected angle between the planet's orbital axis and its host star's spin axis) to be λ=10+1720\lambda=10\substack{+17\\ -20}^{\circ} with an unprojected angle of ψ=23+1412\psi=23\substack{+14\\ -12}^{\circ}. The best-fit RM model to the EXPRES data has a radial velocity semi-amplitude of just 0.41+0.090.10ms10.41\substack{+0.09\\ -0.10} m s^{-1}. The spin-orbit alignment of 55 Cnc e favors dynamically gentle migration theories for ultra-short period planets, namely tidal dissipation through low-eccentricity planet-planet interactions and/or planetary obliquity tides.Comment: 12 pages, 4 figures, published in Nature Astronom

    EXPRES I. HD~3651 an Ideal RV Benchmark

    Get PDF
    The next generation of exoplanet-hunting spectrographs should deliver up to an order of magnitude improvement in radial velocity precision over the standard 1 m/s state of the art. This advance is critical for enabling the detection of Earth-mass planets around Sun-like stars. New calibration techniques such as laser frequency combs and stabilized etalons ensure that the instrumental stability is well characterized. However, additional sources of error include stellar noise, undetected short-period planets, and telluric contamination. To understand and ultimately mitigate error sources, the contributing terms in the error budget must be isolated to the greatest extent possible. Here, we introduce a new high cadence radial velocity program, the EXPRES 100 Earths program, which aims to identify rocky planets around bright, nearby G and K dwarfs. We also present a benchmark case: the 62-d orbit of a Saturn-mass planet orbiting the chromospherically quiet star, HD 3651. The combination of high eccentricity (0.6) and a moderately long orbital period, ensures significant dynamical clearing of any inner planets. Our Keplerian model for this planetary orbit has a residual RMS of 58 cm/s over a 6\sim 6 month time baseline. By eliminating significant contributors to the radial velocity error budget, HD 3651 serves as a standard for evaluating the long term precision of extreme precision radial velocity (EPRV) programs.Comment: 11 pages, 6 figures, accepted for publication in Astronomical Journa
    corecore