866 research outputs found

    Dynamics of the BCS-BEC crossover in a degenerate Fermi gas

    Get PDF
    We study the short-time dynamics of a degenerate Fermi gas positioned near a Feshbach resonance following an abrupt jump in the atomic interaction resulting from a change of external magnetic field. We investigate the dynamics of the condensate order parameter and pair wavefunction for a range of field strengths. When the abrupt jump is sufficient to span the BCS to BEC crossover, we show that the rigidity of the momentum distribution precludes any atom-molecule oscillations in the entrance channel dominated resonances observed in the 40K and 6Li. Focusing on material parameters tailored to the 40K Feshbach resonance system at 202.1 gauss, we comment on the integrity of the fast sweet projection technique as a vehicle to explore the condensed phase in the crossover regionComment: 5 pages, 4 figure

    Absorption, Photoluminescence and Resonant Rayleigh Scattering Probes of Condensed Microcavity Polaritons

    Full text link
    We investigate and compare different optical probes of a condensed state of microcavity polaritons in expected experimental conditions of non-resonant pumping. We show that the energy- and momentum-resolved resonant Rayleigh signal provide a distinctive probe of condensation as compared to, e.g., photoluminescence emission. In particular, the presence of a collective sound mode both above and below the chemical potential can be observed, as well as features directly related to the density of states of particle-hole like excitations. Both resonant Rayleigh response and the absorption and photoluminescence, are affected by the presence of quantum well disorder, which introduces a distribution of oscillator strengths between quantum well excitons at a given energy and cavity photons at a given momentum. As we show, this distribution makes it important that in the condensed regime, scattering by disorder is taken into account to all orders. We show that, in the low density linear limit, this approach correctly describes inhomogeneous broadening of polaritons. In addition, in this limit, we extract a linear blue-shift of the lower polariton versus density, with a coefficient determined by temperature and by a characteristic disorder length.Comment: 16 pages, 11 figures; minor correction

    Non-equilibrium Berezinskii-Kosterlitz-Thouless Transition in a Driven Open Quantum System

    Get PDF
    The Berezinskii-Kosterlitz-Thouless mechanism, in which a phase transition is mediated by the proliferation of topological defects, governs the critical behaviour of a wide range of equilibrium two-dimensional systems with a continuous symmetry, ranging from superconducting thin films to two-dimensional Bose fluids, such as liquid helium and ultracold atoms. We show here that this phenomenon is not restricted to thermal equilibrium, rather it survives more generally in a dissipative highly non-equilibrium system driven into a steady-state. By considering a light-matter superfluid of polaritons, in the so-called optical parametric oscillator regime, we demonstrate that it indeed undergoes a vortex binding-unbinding phase transition. Yet, the exponent of the power-law decay of the first order correlation function in the (algebraically) ordered phase can exceed the equilibrium upper limit -- a surprising occurrence, which has also been observed in a recent experiment. Thus we demonstrate that the ordered phase is somehow more robust against the quantum fluctuations of driven systems than thermal ones in equilibrium.Comment: 11 pages, 9 figure

    Spontaneous rotating vortex rings in a parametrically driven polariton fluid

    Full text link
    We present the theoretical prediction of spontaneous rotating vortex rings in a parametrically driven quantum fluid of polaritons -- coherent superpositions of coupled quantum well excitons and microcavity photons. These rings arise not only in the absence of any rotating drive, but also in the absence of a trapping potential, in a model known to map quantitatively to experiments. We begin by proposing a novel parametric pumping scheme for polaritons, with circular symmetry and radial currents, and characterize the resulting nonequilibrium condensate. We show that the system is unstable to spontaneous breaking of circular symmetry via a modulational instability, following which a vortex ring with large net angular momentum emerges, rotating in one of two topologically distinct states. Such rings are robust and carry distinctive experimental signatures, and so they could find applications in the new generation of polaritonic devices.Comment: 6 pages, 4 figure

    Voltage controlled nuclear polarization switching in a single InGaAs quantum dot

    Full text link
    Sharp threshold-like transitions between two stable nuclear spin polarizations are observed in optically pumped individual InGaAs self-assembled quantum dots embedded in a Schottky diode when the bias applied to the diode is tuned. The abrupt transitions lead to the switching of the Overhauser field in the dot by up to 3 Tesla. The bias-dependent photoluminescence measurements reveal the importance of the electron-tunneling-assisted nuclear spin pumping. We also find evidence for the resonant LO-phonon-mediated electron co-tunneling, the effect controlled by the applied bias and leading to the reduction of the nuclear spin pumping rate.Comment: 5 pages, 2 figures, submitted to Phys Rev

    Vortex dynamics in a compact Kardar-Parisi-Zhang system

    Get PDF
    We study the dynamics of vortices in a two-dimensional, non-equilibrium system, described by the compact Kardar-Parisi-Zhang equation, after a sudden quench across the critical region. Our exact numerical solution of the phase-ordering kinetics shows that the unique interplay between non-equilibrium and the variable degree of spatial anisotropy leads to different critical regimes. We provide an analytical expression for the vortex evolution, based on scaling arguments, which is in agreement with the numerical results, and confirms the form of the interaction potential between vortices in this system.Comment: 5 pages, 3 figures and Supplementary Materia
    corecore