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The Berezinskii-Kosterlitz-Thouless mechanism, in which a phase transition is mediated by the
proliferation of topological defects, governs the critical behavior of a wide range of equilibrium two-
dimensional systems with a continuous symmetry, ranging from spin systems to superconducting thin films
and two-dimensional Bose fluids, such as liquid helium and ultracold atoms. We show here that this
phenomenon is not restricted to thermal equilibrium, rather it survives more generally in a dissipative
highly nonequilibrium system driven into a steady state. By considering a quantum fluid of polaritons of
an experimentally relevant size, in the so-called optical parametric oscillator regime, we demonstrate that
it indeed undergoes a phase transition associated with a vortex binding-unbinding mechanism. Yet, the
exponent of the power-law decay of the first-order correlation function in the (algebraically) ordered phase
can exceed the equilibrium upper limit: this shows that the ordered phase of driven-dissipative systems
can sustain a higher level of collective excitations before the order is destroyed by topological defects.
Our work suggests that the macroscopic coherence phenomena, observed recently in interacting two-
dimensional light-matter systems, result from a nonequilibrium phase transition of the Berezinskii-
Kosterlitz-Thouless rather than the Bose-Einstein condensation type.
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Quantum Physics, Superfluidity

I. INTRODUCTION

The Hohenberg-Mermin-Wagner theorem prohibits
spontaneous symmetry breaking of continuous sym-
metries and associated off-diagonal long-range order for
systems with short-range interactions at thermal equilib-
rium in two (or fewer) dimensions [1]. This is because
long-range fluctuations due to the soft Goldstone mode
are so strong as to be able to “shake apart” any possible
long-ranged order. The Berezinskii-Kosterlitz-Thouless
(BKT) mechanism (for an overview, see Refs. [2,3])
provides a loophole to the Hohenberg-Mermin-Wagner
theorem: Two-dimensional systems can still exhibit a
phase transition between a quasi-long-range ordered phase
below a critical temperature, where correlations decay

algebraically and topological defects are bound together,
and a disordered phase above such a temperature, where
defects unbind and proliferate, causing exponential decay of
correlations. Further, it can be shown [4] that the algebraic
decay exponent in the ordered phase cannot exceed the
upper bound value of 1=4.
The BKT transition is relevant for a wide class of

systems. Perhaps the most celebrated examples are those
in the context of 2D superfluids, as in 4He and ultracold
atoms: Here, despite the absence of true long-range order,
as well as a true condensate fraction, clear evidence of
superfluid behavior has been observed in the ordered phase
[5]. Particularly interesting, and far from obvious, is the
case of harmonically trapped ultracold atomic gases [6].
While, in an ideal gas, trapping modifies the density of
states so that to allow Bose-Einstein condensation (BEC)
and a true condensate [7,8], weak interactions change
the phase transition from normal-to-BEC to normal-to-
superfluid and recover the BKT physics despite the
system’s harmonic confinement [9,10].
These considerations are applicable to systems in thermal

equilibrium, where the BKT transition can be understood in
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terms of the free energy being minimized in either the phase
with free vortices or in the onewith bound vortex-antivortex
pairs. However, in recent years a new class of 2D quantum
systems has emerged: strongly driven and highly dissipative
interacting many-body light-matter systems such as, for
example, polaritons in semiconductor microcavities [11],
photons in a dye medium [12], and cold atoms in optical
cavities [13] or cavity arrays [14,15]. Because of the
dissipative nature of the photonic part, a strong drive is
necessary to sustain a nonequilibrium steady state. In spite
of this, a transition from a normal to a superfluid phase in
driven microcavity polaritons has been observed [16,17],
and the superfluid properties of the ordered phase have
started being explored [18–22]. Being strongly driven, the
system does not obey the principle of free energy mini-
mization, and so it is not obvious whether the transition
between the normal and superfluid phases, as the density of
particles is increased, is of the BKT type, i.e., due to vortex-
antivortex pairs unbinding.
Current experiments are not yet able to resolve single

shot measurements, and so are not sufficiently sensitive
to detect randomly moving vortices. Algebraic decay of
correlations was reported from averaged data [23,24];
however, the power-law decay displays a larger exponent
than the one allowed in equilibrium, which posed questions
as to the actual mechanism of the transition. On the theory
side, by mapping the complex Ginzburg-Landau equation
describing long-wavelength condensate dynamics onto the
anisotropic Kardar-Parisi-Zhang equation, Altman et al.
[25] concluded that although no algebraic order is possible
in a truly infinite system, the Kardar-Parisi-Zhang length
scale is certainly much larger than any reasonable system
size in the case of microcavity polaritons.
In this work, we consider the case of microcavity

polaritons coherently driven into the optical parametric
oscillator (OPO) regime [26,27] as the archetype of a
nonequilibrium phase transition in a 2D driven-dissipative
system. Another popular pumping scheme is incoherent
injection of hot carriers, which relax down to the polariton
ground state by exciton formation and interactions with
the lattice phonons [16,17]. However, the incoherently
pumped polariton system is challenging to model due to
the complicated and not yet fully understood processes of
relaxation. As a result, one is typically forced to use
phenomenological models [28], which often suffer from
ultraviolet divergences [28]. From this point of view, the
parametric oscillation regime is particularly appealing, as
an ab initio theoretical description can be developed in
terms of a system Hamiltonian [29], and its predictions can
be directly compared to experiments.
Analyzing the nonequilibrium steady state with a tech-

nique able to account for topological defects and large
fluctuations, we show that, despite the presence of a strong
drive and dissipation, the transition from the normal to the
superfluid phase in this light-matter interacting system is of

the BKT type, i.e., governed by binding and dissociation of
vortex-antivortex pairs as a function of particle density, and
bares a lot of similarities to the equilibrium counterpart.
However, as recent experiments suggested [23], we find
that larger exponents of the power-law decay of the first-
order correlation function are possible before vortices
unbind and destroy the quasi-long-range order leading to
exponential decay. This suggests that the external drive,
decay, and associated noise favor excitations of collective
excitations, the Goldstone phase modes, which lead to
faster spatial decay, over unpaired vortices, which would
destroy the quasiorder all together. This externally over-
shaken-but-not-stirred quantum fluid constitutes an inter-
esting new laboratory to explore nonequilibrium phases
of matter.

II. SIMULATING DRIVEN-DISSIPATIVE
OPEN SYSTEMS

We describe the dynamics of polaritons in the OPO
regime, by starting from the system Hamiltonian for the
coupled exciton and cavity photon field operators
ψ̂X;Cðr; tÞ, depending on time t and 2D spatial coordinates
r ¼ ðx; yÞ (ℏ ¼ 1):

ĤS ¼
Z

drð ψ̂†
X ψ̂†

C Þ
 −∇2

2mX
þ gX

2
jψ̂Xj2 ΩR

2

ΩR
2

−∇2

2mC

!�
ψ̂X

ψ̂C

�
:

Here, mX;C are the exciton and photon masses, gX the
exciton-exciton interaction strength, and ΩR the Rabi
splitting [11]. In order to introduce the effects of both
an external drive (pump) and the incoherent decay, we add
to ĤS a system-bath Hamiltonian ĤSB

ĤSB ¼
Z

dr½Fðr; tÞψ̂†
Cðr; tÞ þ H:c:�

þ
X
k

X
l¼X;C

fζlk½ψ̂†
l;kðtÞB̂l;k þ H:c:� þ ωl;kB̂

†
l;kB̂l;kg;

where ψ̂ l;kðtÞ are obtained Fourier transforming to momen-
tum space k ¼ ðkx; kyÞ the corresponding field operators in
real space ψ̂ lðr; tÞ. B̂l;k and B̂†

l;k are the bath’s bosonic
annihilation and creation operators with momentum k
and energy ωl;k, describing the decay processes for both
excitons and cavity photons. To compensate the decay, the
system is driven by an external homogeneous coherent
pump Fðr; tÞ ¼ fpeiðkp·r−ωptÞ, which continuously injects
polaritons into a pump state, with momentum kp and
energy ωp.
Within the Markovian bath regime, standard quantum

optical methods [30,31] can be used to eliminate the
environment and obtain a description of the system
dynamics in terms of a master equation. As the full
quantum problem is, in practice, intractable, a simple yet
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useful description of the parametric oscillation process
properties has been provided by the mean-field approxima-
tion, where the quantum fields ψ̂ lðr; tÞ are replaced by the
classical fields ψMF

l ðr; tÞ, whose dynamics is governed by
the following generalized Gross-Pitaevskii equation [11]:

i∂t

�
ψMF
X

ψMF
C

�
¼HMF

�
ψMF
X

ψMF
C

�
þ
�

0

Fðr;tÞ

�
;

HMF¼
0
@−∇2

2mX
þgXjψMF

X j2− iκX
ΩR
2

ΩR
2

−∇2

2mC
− iκC

!
; ð1Þ

where κX;C are the exciton and photon decay rates. By
solving Eq. (1) both analytically and numerically, much
work has been carried out on the mean-field dynamics for
polaritons in the OPO regime and its properties have been
analyzed in detail [32–34]. Here, polaritons resonantly
injected into the pump state, with momentumkp and energy
ωp, undergo parametric scattering into the signal ðks;ωsÞ
and idler ðki;ωiÞ states (see Fig. 1). As explained in detail in
Ref. [35], as well as in other works [34], the full steady state
OPO photon emission ψMF

C ðr; tÞ is filtered in momentum
around the values of the signal, pump, and idler momenta
ks;p;i in order to get their corresponding steady state profiles,
i.e., ψMF

s;p;iðr; tÞ ¼
P

jk−ks;p;ij<~ks;p;i
ψMF
C;kðtÞeik·r. The choice of

each state filtering radius ~ks;p;i is such that the filtered
profiles ψMF

s;p;iðr; tÞ are not affected by them; for details, see
Ref. [35]. Themean-field onset of OPO is shown in the inset
of Fig. 3, where the mean-field densities of both pump
and signal [defined as nMF

s;p;i ¼
R
drjψMF

s;p;iðr; tÞj2=V, with V
being the system area] are plotted as a function of
the increasing pump power fp. Note that the OPO transition
also has an upper threshold; i.e., the parametric process is
switching off at very high pump powers (see Refs. [32,33]
for details). The regime considered in this work is close
to the lower threshold for the OPO. At mean-field level,
parametric processes lock the sumof the phases of signal and
idler fields ψMF

s;i to that of the external pump, while allowing
a global U(1) gauge symmetry for their phase difference to
be spontaneously broken in the OPO phase—a feature that
implies the appearance of a Goldstonemode [36]. As shown
below, fluctuations can lift, close to the OPO threshold, this
perfect phase locking.
To move beyond the Gross-Pitaevskii mean-field

description [Eq. (1)], one can make use of phase-space
techniques—for a general introduction, see Ref. [37], while
for recent developments in quantum fluids of atoms and
photons, seeRefs. [38–40]. Here, the quantum fields ψ̂ lðr; tÞ
are represented as quasiprobability distribution functions
in the functional space of C-number fields ψ̂ lðr; tÞ. Under
suitable conditions, the Fokker-Planck partial differential
equation, which governs the time evolution of the quasi-
probability distribution, can be mapped on a stochastic

partial differential equation, which in turn can be numeri-
cally simulated on a finite N × N grid with spacing a
(along both x and y directions) and a total size Lx;y¼Na,
comparable to the polariton pump spot size in state-of-the-
art experiments. For the systemunder consideration here, the
Wigner representation—one of the many possible quasi-
probability distributions—is the most suitable to numerical
implementation: in the limit gX=ðκX;CdVÞ ≪ 1, wheredV ¼
a2 is the cell area, it in fact appears legitimate [29,41]
to truncate the Fokker-Planck equation, retaining the

FIG. 1. Polariton system in the OPO regime. Upper panel: 2D
map of the photonic OPO spectrum jψC;kx;ky¼0ðωÞj2 (logarithmic
scale) of energy ω versus the kx momentum component (cut at
ky ¼ 0) for a single noise realization and at a pump power
fp ¼ 1.024 36fthp , where fthp is the mean-field OPO threshold.
The arrows show schematically the parametric process scattering
polaritons from the pump state into the signal and idler modes.
Dashed (green) lines show the bare upper polariton (UP) and
lower polariton (LP) dispersions, while dotted (black) lines are
the cavity photon (C) and exciton (X) dispersions. The solid
(black) line underneath the spectrum is the ky ¼ 0 cut of the
single-shot time-averaged in the steady state momentum distri-
bution

R
dtjψC;kx;ky¼0ðtÞj2, clearly showing the macroscopic

occupation of the three OPO pump, signal, and idler states.
Lower panels: 2D maps of the filtered space profiles jψ s;p;iðr; tÞj2
at a fixed time t for which a steady state regime is reached—the
pump emission intensity is rescaled to 1. Blue (red) dots indicate
the vortex (antivortex) core positions.
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second-order derivative term only, thus obtaining the fol-
lowing stochastic differential equation:

id

�
ψX

ψC

�
¼
�
H0

MF

�
ψX

ψC

�
þ
�
0

F

��
dtþ i

� ffiffiffiffiffi
κX

p
dWXffiffiffiffiffi

κC
p

dWC

�
:

ð2Þ

Here, dWl¼X;C are complex-valued, zero-mean, indepen-
dent Wiener noise terms with hdW�

l ðr; tÞdWmðr0; tÞi ¼
δr;r0δl;mðdt=dVÞ, and the operator H0

MF coincides with
HMF in Eq. (1) with the replacement jψMF

X j2↦jψXj2−
ð1=dVÞ. The same stochastic equation (2) can be alterna-
tively derived applying a Keldysh path integral formalism to
the Hamiltonian ĤS þ ĤSB, integrating out the bath fields,
and keeping only the renormalization group relevant terms
[42]. Note that, remarkably, some of the difficulties of the
truncated Wigner method met in the context of equilibrium
systems, such as for cold atoms, are suppressed here by the
presence of loss and pump terms, i.e., the existence of a small
parameter gX=ðκldVÞ, which controls the truncation [11].
Note, however, that the bound on this truncation parameter
involves the cell area dV of the numerical grid, that is, the
UV cutoff of the stochastic truncated Wigner equation. For
typical OPO parameters, it is possible to choose dV small
enough to capture the physics but at the same time large
enough to keep the UV issues under control. Note that this
method is particularly suitable for studying the region close
to the transition, as it is not limited to small fluctuations,
rather it can account for large fluctuations as well as
topological defects.
We reconstruct the steady state Wigner distributions

ψ lðr; tÞ by considering a monochromatic homogeneous
continuous-wave pump Fðr; tÞ ¼ fpeiðkp·r−ωptÞ as before
and letting the system evolve to its steady state. In order to
rule out any dependence on the chosen initial conditions,
we consider four extremely different cases: empty cavity
with random noise initial conditions and adiabatic increase
of the external pump power strength; mean-field conden-
sate initial conditions; either random or mean-field initial
conditions in the presence of an unpumped region at the
edges of the numerical box, so as to model a sort of vortex-
antivortex (V-AV) reservoir. The different initial stage
dynamics, and their physical interpretation for each of these
four different initial conditions, are carefully described in
Ref. [35]; in all four cases we always reach the very same
steady state, i.e., all noise-averaged observable quantities,
discussed in the following, lead to the same result—this
could not be a priori assumed for a nonlinear system.
Below, we first analyze results from single noise real-

izations (concretely, here, for the case of mean-field initial
conditions and no “V-AV reservoir” present), by filtering
the photon emission at the signal, pump, and idler momenta
as also previously done at the mean-field level. The filtered
profiles are again indicated as ψ s;p;iðr; tÞ; for details on

filtering, see Ref. [35]. Second, we consider a large number
of independent noise realizations and perform stochastic
averages of appropriate field functions in order to deter-
mine the expectation values of the corresponding symmet-
rically ordered quantum operators. In particular, we
evaluate the signal first-order correlation function as

gð1ÞðrÞ¼ hψ�
sðrþR; tÞψ sðR; tÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihψ�

sðR; tÞψ sðR; tÞihψ�
sðrþR; tÞψ sðrþR; tÞip ;

ð3Þ
where the averaging h� � �i is taken over both noise
realizations as well as the auxiliary position R, and where
t is either a fixed time after a steady state is reached or we
take additional time-average in the steady state [35].

III. VORTICES AND DENSITIES ACROSS
THE TRANSITION

It is particularly revealing to explore the steady state
profiles, i.e., ψ s;p;iðr; tÞ, of the signal, pump, and idler
states. Figure 1 shows a cut at ky ¼ 0 of the OPO spectrum,
jψC;kx;ky¼0ðωÞj2, determined by solving Eq. (2) for
ψX;Cðr; tÞ to a steady state and evaluating the Fourier
transforms in both space and time. The three strongly
occupied states, the signal, the pump, and the idler, are
clearly visible in the spectrum. Note that the logarithmic
scale of this 2D map plot (which we employ to clearly
characterize all three OPO states) makes the emission
artificially look broad in energy, while in reality this is
sharp (as required by a steady state regime), and it is
very narrow in momentum. The filtered space profiles
ψ s;p;iðr; tÞ, shown in the bottom panels of Fig. 1, reveal that
while the pump state is homogeneous and free from
defects, V-AV pairs are present for both signal and idler
states. Note that while at the mean-field level the sum of the
signal and idler phases is locked to the one of the pump
(and thus a V in the signal implies the presence of an AV
at the same position in the idler), the large fluctuations
occurring in the vicinity of the OPO threshold make this
coherent phase-locking mechanism only weakly enforced,
resulting in a different number (and different core loca-
tions) of V-AV pairs in the signal and idler states. Because
the density of photons in the idler state is much lower than
the one at the signal (see, e.g., the photonic momentum
distribution plotted as a solid black line inside the upper
panel of Fig. 1), while both states experience the same noise
strength, the number of V-AV pairs in the filtered photonic
signal profile is much lower than the number of pairs in the
filtered photonic idler profile. Complete phase locking
between signal and idler is recovered instead for pump
powers well above the OPO threshold, where long-range
coherence over the entire pumping region is reestablished.
The proliferation of free vortices below the OPO

transition, followed by a sharp decrease in their density
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and their binding into close vortex-antivortex pairs at larger
pump powers, is illustrated in Fig. 2. Here, the 2D maps
show the phase of the filtered OPO signal ψ sðr; tÞ (photonic
component) for a single noise realization at increasing
values of the pump power fp in a narrow region close to the
mean-field OPO threshold fthp ; the position of the generated
vortices (antivortices) is marked with black (red) dots.
While at lower pump powers there is a dense “plasma” of
V’s and AV’s, the number of V’s and AV’s decreases with
increasing pump powers till eventually disappearing alto-
gether (not shown). Note that, as discussed in detail in
Ref. [35], due to our momentum filtering procedure we do
not detect V-AV pairs with distance between V and AV
smaller than 2.7 μm, i.e., we focus on free vortices and
pairs with relatively large distance between V and AV,
which are relevant for the BKT transition. We also observe
a net decrease in the distance between nearest-neighboring
vortices with opposite winding number with respect to that
between vortices with the same winding number. In order
to quantify the vortex binding across the OPO transition,
we determine, for each detected vortex, the distance to its
nearest vortex, rV-V and to its nearest antivortex rV-AV, and

similarly, for each detected antivortex, we determine
rAV-AV and rAV-V. These quantities can then be averaged
over many different realizations, as well as over individual
vortex positions, to obtain hrl−mi (l, m ¼ V, AV). We then
consider the symmetrized ratio b ¼ ðhrV-AVi þ hrAV-ViÞ=
ðhrV-Vi þ hrAV-AViÞ; this quantity b → 1 for an unbound
vortex plasma, while b → 0 when vortices form tightly
bound pairs. A dramatic drop in b (green squares in Fig. 3)
when increasing the pump power across the OPO threshold
indicates that vortices and antivortices are indeed binding,
as is expected for a BKT transition.
By evaluating other relevant noise-averaged observable

quantities, we are able to construct a phase diagram for the
OPO transition in Fig. 3 and link it with the properties of
the BKT transition. In particular, we calculate the averaged
signal photonic density at some time t in the steady state,
ns ¼

R
drhjψ sðr; tÞj2i=V, where V ¼ ðNaÞ2 is the system

area and h� � �i indicates the noise average for the stochastic
dynamics (blue dots in Fig. 3). The corresponding mean-
field densities for both signal (orange line) and pump (black
line) are presented for comparison in the inset of Fig. 3,
and additionally for the signal in the main panel (orange

FIG. 2. Binding-unbinding transition and vortex-antivortex
proliferation across the OPO threshold. Phase (color map) of
the filtered OPO signal ψsðr; tÞ and position of vortices (black
dots) and antivortices (red dots) for increasing values of the
pump power, in a narrow region close to the mean-field OPO
threshold fthp : (a) fp¼1.00287fthp , (b) fp¼1.01648fthp , (c) fp ¼
1.017 19fthp , and (d) fp ¼ 1.024 36fthp . We observe a dramatic
decrease of both the number of V’s and AV’s, as well as the
typical distance between Vand AV within a pair, as a function of
the increasing pump power. The filtered profiles are plotted at a
late stage of the dynamics, at which a steady state is reached.

FIG. 3. The phase diagram and the BKT transition. Inset:
Mean-field photonic OPO densities for pump nMF

p (black line)
and signal nMF

s (orange line) states as a function of increasing
pump power fp rescaled by the threshold value fthp (vertical black
dashed line). The black square at fp ≃ fthp indicates the tiny
pump strength interval close to mean-field threshold analyzed in
the main panel. Main panel: We plot with (orange) squares the
same mean-field signal density nMF

s as in the inset. All other data
are noise-averaged properties from stochastic simulations as a
function of the pump strength. The noise-averaged signal density
ns is plotted with (blue) dots, the average vortex number in the
signal rescaled by its average maximum value Nmax ¼ 222.8with
(red) diamonds, and the ratio b of noise-averaged and sym-
metrized distance between nearest-neighboring vortices of oppo-
site charge and of the same charge with (green) empty squares.
The shaded region indicates the pump region for the BKT
transition. Note that the left-hand side axis label applies to data
marked by orange squares and blue dots, while the right-hand
side axis label applies to data marked by red diamonds and green
empty squares.
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squares). At mean-field level, both signal and idler (not
shown) suddenly switch on at the OPO threshold pump
power, fp ¼ fthp , and both states are macroscopically
occupied above threshold. The effect of fluctuations is to
smoothen the sharp mean-field transition, as clearly shown
by comparing ns with nMF

s densities in Fig. 3. This is
because, even below the mean-field threshold, incoherent
fluctuations weakly populate the signal. Note also that,
even though somewhat smoothened, we can still appreciate
a kink in the ns density, but at higher values of the pump
power compared to the mean-field threshold fthp .
Although defining precisely the position of the critical

point in any numerical or experimental study of a finite size
system is difficult (see Ref. [35] for more discussion), the
behavior of several observables suggests that the critical
point for the novel nonequilibrium BKT transition is
somewhere around this kink. While this location is further
supported by a sudden decrease of the averaged number of
detectable vortices in the signal (red diamonds) and of the
averaged relative distance b between nearest-neighboring
vortices of opposite or same winding number (green
squares), the final evidence is offered by the qualitative
change in the functional form of the first-order spatial
coherence (discussed in the next section) concomitant with
the observed kink for ns, its long-distance decay changes
from an exponential to a power-law form.
These results suggest that the system undergoes a phase

transition analogous to the equilibrium BKT transition.
Both vortices and antivortices proliferate below some
threshold and, above, they bind to eventually disappear
altogether. As indicated by the black square in the inset of
Fig. 3, the region for such a crossover is indeed narrow in
the pump strength, and so a high degree of fine-tuning and
control is required in experiments to stay in this regime.
Note, however, that as shown in Fig. 3 and further
discussed in Ref. [35], this region is no longer so narrow
when plotted as a function of the signal polariton density,
which changes by an order of magnitude (from 2 to 20
photons per μm2), and should be experimentally accessible
from a standard measurement of the photoluminescence
intensity.

IV. FIRST-ORDER SPATIAL CORRELATIONS

For systems in thermal equilibrium, the BKT transition is
associated with the onset of quasi-off-diagonal long-range
order, i.e., with the algebraic decay of the first-order
correlation function in the ordered phase, where vortices
are bound, and exponential decay in the disordered phase,
where free vortices do proliferate. In order to investigate
whether the same physics applies to the out-of-equilibrium
open-dissipative system, we evaluate the signal first-order
correlation function gð1ÞðrÞ according to the prescription of
Eq. (3), and characterize its long-range behavior in Fig. 4.
We observe the ordering transition as a crossover in the

long-distance behavior between an exponential decay in the
disordered phase, gð1ÞðrÞ ∼ e−r=ξ, and an algebraic decay in
the quasiordered phase, gð1ÞðrÞ ∼ ðr=r0Þ−α. We therefore
fit the tail of the calculated correlation function to both of
these functional forms, and find that at the onset of vortex
binding-unbinding and proliferation the signal’s spatial
correlation function changes its long-range nature from
exponential at lower pump powers to algebraic at higher
pump powers (see Fig. 4).
However, in contrast to the thermal equilibrium case,

we do obtain that the exponent α of the power-law decay
(inset of Fig. 4) can exceed the equilibrium upper bound
of 1=4 [4], and can reach values as high as α≃ 1.2 for
fp=fthp ¼ 1.0136, just within the ordered phase. The
dependence of α on the system size [35] confirms that its
large value is indeed a consequence of the nonequilibrium
condition and not an artifact of the finite size of the
numerical box. Further, as thoroughly discussed in
Ref. [35], it is interesting to note that, close to the transition,
we do record a critical slowing-down of the dynamics: Here,
the convergence to a steady state is dramatically slowed

FIG. 4. Algebraic and exponential decay of the first-order
correlation function across the BKT transition. Main panel:
Long-range spatial dependence of gð1ÞðrÞ for different pump
powers fp=fthp close to the mean-field pump threshold (the
symbols are the same ones as in the inset and correspond to
the same values of fp=fthp ). Thick solid (thick dashed) lines
are power-law (exponential) fitting, from which values of the
exponent α are derived. The fp=fthp ¼ 1.0129 case (orange
squares) is a marginal case where both algebraic and exponential
fits apply almost equally well, signaling the BKT transition
region. Inset: Power-law algebraic decay exponent α for different
pump powers fp=fthp ; error bars are standard deviations of the
time-average.

G. DAGVADORJ et al. PHYS. REV. X 5, 041028 (2015)

041028-6



down compared to cases above or below the OPO transition,
a feature also common to other phase transitions. At the
same time, close to threshold, the convergence of a noise-
averaged number of vortices is much faster than the
convergence of the power-law exponent α. This indicates
that collective excitations take longer time than topological
defects to equilibrate to a steady state. Finally, note that for
sufficiently strong pump powers, the power-law exponent
becomes extremely small, and, thus, quasi-long-range order
is difficult to distinguish from the true long-range order over
the entire system size.
Our findings explain why recent experimental studies,

both in the OPO regime [43] as well as for nonresonant
pumping [23], experienced noticeable difficulties in inves-
tigating the power-law decay of the first-order correlation
function across the transition. We do indeed find that the
pump strength interval over which power-law decay can be
clearly seen is extremely small, and the system quickly
enters a regime where coherence extends over the entire
system size, as measured in Ref. [43]. This was also
observed in nonresonantly pumped experiments when using
a single-mode laser [16]. However, by intentionally adding
extra fluctuations by employing a multimode laser pump,
as in Ref. [23], power-law decay was finally measured in
the correlated regime, with an exponent in the range
α≃ 0.9–1.2, in agreement with our results.
We finally note that the exponent α > 1=4 recently

observed in the atomic experiment of Ref. [44] can be
attributed to a spatial inhomogeneity rather than a non-
equilibrium effect: Along these lines, we expect that
experimental investigation of our prediction for polariton
gases will require using a pump beam with a spatially wide
region of homogeneous intensity and a precise control of
photonic disorder.

V. DISCUSSION

Considering microcavity polaritons in the optical para-
metric oscillator regime as the prototype of a driven-
dissipative system, and using methods able to account
for large fluctuations and topological defects, we show that
a mechanism analogous to the BKT transition, which
governs the equilibrium phase transitions in two dimen-
sions, occurs out of equilibrium for a driven-dissipative
system of experimentally realistic size. Notwithstanding
the novelty and significance of this result, there are a
number of novel features that warrant special discussion as
they are peculiar to the nonequilibrium phase transition. We
show that the exponent of algebraic decay in the quasi-long-
range ordered phase exceeds what would be attainable in
equilibrium. This recovers a recent observation [23], and
strongly suggests that indeed a nonequilibrium BKT may
have been seen there. Moreover, our findings imply that
before topological defects destroy the order, the quasior-
dered phase can somehow sustain a higher level of smooth
collective excitations in a dissipative-driven nonequilibrium

system than in a thermal equilibrium scenario. There are
several open questions that stem from our work. Is there a
nonequilibrium universal upper bound for the α exponent?
What would it depend on and would it smoothly connect to
the equilibrium case?.
Although for realistic experimental conditions we find

that the region for BKT physics, before the pump power is
strong enough to induce perfect spatial coherence over the
entire system size, is indeed narrow, we believe our work
will encourage further experimental investigations in the
direction of studying the nonequilibrium BKT phenomena.
Even though the small size of the critical region has thus far
hindered its direct experimental study, our calculations
indicate that the macroscopic coherence observed in past
polariton experiments [16,17,26,27,43] results from a non-
equilibrium phase transition of the BKT rather than the
BEC kind.
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APPENDIX: METHODS

We simulate the dynamics of the stochastic equations (2)
with the XMDS2 software framework [46] using a fixed-
step (where the fixed-step size ensures stochastic noise
consistency) fourth-order Runge-Kutta algorithm, which
we have tested against fixed-step ninth-order Runge-Kutta,
and a semi-implicit fixed-step algorithm with 3 and 5
iterations. We choose the system parameters to be close to
current experiments [20]: The Rabi frequency is chosen as
ΩR ¼ 4.4 meV, the mass of the microcavity photons is
taken to be mC ¼ 2.3 × 10−5me, where me is the electron
mass, themass of the excitons ismuch greater than this sowe
consider m−1

X → 0, the exciton and photon decay rates as
κX ¼ κC ¼ 0.1 meV, and the exciton-exciton interaction
strength gX ¼ 0.002 meV μm2 [47]. The pump momentum
kp ¼ ðkp; 0Þ, with kp ¼ 1.6 μm−1, is fixed just above the
inflection point of the LP dispersion, and its frequency,
ωp − ωXð0Þ ¼ 1.0 meV, just below the bare LP dispersion.
In order to satisfy the condition necessary to derive the
truncated Wigner equation (2), gX=ðκX;CdVÞ ≪ 1, while
maintaining a sufficient spatial resolution and, at the same
time, a large enough momentum range so as to resolve the
idler state, simulations are performed on a 2D finite grid of
N×N¼280×280 points and lattice spacing a ¼ 0.866 μm.
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Thus, the only system parameter left free to be varied is the
pump strength fp: We first solve the mean-field dynamics
(1) in order to determine the pump threshold fthp for the onset
of OPO (it is fthp ¼ 5 meV=μm for the above parameters).
We thenvary the value of fp around fthp in the presence of the
noise in order to investigate the nature of the OPO transition.
We analyze the results from single noise realizations by
filtering the full photonic emission for signal pump and idler
states, as described in the main text, as well as in Ref. [35].
Further, we average all of our results over many independent
realizations, which are taken either from 96 independent
stochastic paths or from multiple independent snapshots
in time after the steady state is reached: As thoroughly
discussed in Ref. [35], 96 stochastic paths is shown to be
sufficient to ensure the convergence of noise-averaged
observable quantities. For each noise realization, vortices
are counted by summing the phase difference (modulo 2π)
along each link around every elementary plaquette on the
filtered grid. In the absence of a topological defect, this
sum is zero, while if the sum is 2π (−2π), we determine there
to be a vortex (antivortex) at the center of the plaquette. The
number of vortices is then averaged over the different
stochastic paths or over time in the steady state (see
Ref. [35]): We consider the averaged number of vortices
to be converged in time when its variation is less than 5%.
Finally, the first-order correlation function gð1ÞðrÞ is evalu-
ated according to Eq. (3), by averaging over both the noise
and the auxiliary position R; as discussed in Ref. [35], this
can be computed efficiently in momentum space.
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Ciuti, and A. Imamoǧlu, Fermionized Photons in an Array
of Driven Dissipative Nonlinear Cavities, Phys. Rev. Lett.
103, 033601 (2009).

[15] M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio,
Quantum Many-Body Phenomena in Coupled Cavity
Arrays, Laser Photonics Rev. 2, 527 (2008).

[16] J. Kasprzak et al., Bose-Einstein Condensation of Exciton
Polaritons, Nature (London) 443, 409 (2006).

[17] H. Deng, H. Haug, and Y. Yamamoto, Exciton-Polariton
Bose-Einstein Condensation, Rev. Mod. Phys. 82, 1489
(2010).

[18] A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I.
Carusotto, R. Houdré, E. Giacobino, and A. Bramati,
Superfluidity of Polaritons in Semiconductor Microcavities,
Nat. Phys. 5, 805 (2009).

[19] A. Amo et al., Collective Fluid Dynamics of a Polariton
Condensate in a Semiconductor Microcavity, Nature
(London) 457, 291 (2009).

[20] D. Sanvitto et al., Persistent Currents and Quantized
Vortices in a Polariton Superfluid, Nat. Phys. 6, 527
(2010).

[21] F. M. Marchetti, M. H. Szymańska, C. Tejedor, and D. M.
Whittaker, Spontaneous and Triggered Vortices in Polar-
iton Optical-Parametric-Oscillator Superfluids, Phys. Rev.
Lett. 105, 063902 (2010).

[22] G. Tosi et al., Onset and Dynamics of Vortex-Antivortex
Pairs in Polariton Optical Parametric Oscillator Super-
fluids, Phys. Rev. Lett. 107, 036401 (2011).

[23] G. Roumpos et al., Power-Law Decay of the Spatial
Correlation Function in Exciton-Polariton Condensates,
Proc. Natl. Acad. Sci. U.S.A. 109, 6467 (2012).

[24] G. Roumpos and Y. Yamamoto, Exciton Polaritons in
Microcavities (Springer, New York, 2012), pp. 85–146.

[25] E. Altman, L. M. Sieberer, L. Chen, S. Diehl, and J. Toner,
Two-Dimensional Superfluidity of Exciton Polaritons Re-
quires Strong Anisotropy, Phys. Rev. X 5, 011017 (2015).

[26] R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D.M.
Whittaker,M.Emam-Ismail,A. I. Tartakovskii, P. G. Savvidis,
J. J. Baumberg, and J. S. Roberts, Continuous Wave Obser-
vation of Massive Polariton Redistribution by Stimulated
Scattering in Semiconductor Microcavities, Phys. Rev. Lett.
85, 3680 (2000).

[27] J. J. Baumberg, P. G. Savvidis, R. M. Stevenson,
A. I. Tartakovskii, M. S. Skolnick, D. M. Whittaker, and

G. DAGVADORJ et al. PHYS. REV. X 5, 041028 (2015)

041028-8

http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/RevModPhys.59.1001
http://dx.doi.org/10.1103/RevModPhys.59.1001
http://dx.doi.org/10.1103/PhysRevLett.39.1201
http://dx.doi.org/10.1103/PhysRevLett.39.1201
http://dx.doi.org/10.1103/PhysRevLett.40.1727
http://dx.doi.org/10.1103/PhysRevLett.40.1727
http://dx.doi.org/10.1038/nature04851
http://dx.doi.org/10.1103/PhysRevA.44.7439
http://dx.doi.org/10.1073/pnas.0609957104
http://dx.doi.org/10.1103/PhysRevLett.114.255302
http://dx.doi.org/10.1103/PhysRevLett.114.255302
http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1038/nature09567
http://dx.doi.org/10.1103/RevModPhys.85.553
http://dx.doi.org/10.1103/PhysRevLett.103.033601
http://dx.doi.org/10.1103/PhysRevLett.103.033601
http://dx.doi.org/10.1002/lpor.200810046
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1103/RevModPhys.82.1489
http://dx.doi.org/10.1103/RevModPhys.82.1489
http://dx.doi.org/10.1038/nphys1364
http://dx.doi.org/10.1038/nature07640
http://dx.doi.org/10.1038/nature07640
http://dx.doi.org/10.1038/nphys1668
http://dx.doi.org/10.1038/nphys1668
http://dx.doi.org/10.1103/PhysRevLett.105.063902
http://dx.doi.org/10.1103/PhysRevLett.105.063902
http://dx.doi.org/10.1103/PhysRevLett.107.036401
http://dx.doi.org/10.1073/pnas.1107970109
http://dx.doi.org/10.1103/PhysRevX.5.011017
http://dx.doi.org/10.1103/PhysRevLett.85.3680
http://dx.doi.org/10.1103/PhysRevLett.85.3680


J. S. Roberts, Parametric Oscillation in a Vertical Micro-
cavity: A Polariton Condensate or Micro-Optical Para-
metric Oscillation, Phys. Rev. B 62, R16247 (2000).

[28] A. Chiocchetta and I. Carusotto, Non-Equilibrium Quasi-
Condensates in Reduced Dimensions, Europhys. Lett. 102,
67007 (2013).

[29] K. Vogel and H. Risken, Quasiprobability Distributions in
Dispersive Optical Bistability, Phys. Rev. A 39, 4675 (1989).

[30] M. H. Szymańska, J. Keeling, and P. B. Littlewood, Mean-
Field Theory and Fluctuation Spectrum of a Pumped
Decaying Bose-Fermi System across the Quantum Con-
densation Transition, Phys. Rev. B 75, 195331 (2007).

[31] D. F. Walls and G. J. Milburn, Quantum Optics (Springer,
New York, 2007).

[32] D. M. Whittaker, Effects of Polariton-Energy Renormaliza-
tion in the Microcavity Optical Parametric Oscillator, Phys.
Rev. B 71, 115301 (2005).

[33] M. Wouters and I. Carusotto, Parametric Oscillation
Threshold of Semiconductor Microcavities in the Strong
Coupling Regime, Phys. Rev. B 75, 075332 (2007).

[34] F. M. Marchetti and M. H. Szymańska, Exciton Polaritons
in Microcavities New Frontiers, Springer Series in Solid-
State Sciences, edited by V. Timofeev and D. Sanvitto
(Springer-Verlag, Berlin, 2012), pp. 173–213.

[35] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.5.041028 for details on
the numerical procedures.

[36] M. Wouters and I. Carusotto, Goldstone Mode of Optical
Parametric Oscillators in Planar Semiconductor Micro-
cavities in the Strong-Coupling Regime, Phys. Rev. A 76,
043807 (2007).

[37] C. Gardiner and P. Zoller, Quantum Noise: A Handbook
of Markovian and Non-Markovian Quantum Stochastic
Methods with Applications to Quantum Optics (Springer,
New York, 2004), Vol. 56.

[38] I. Carusotto and C. Ciuti, Spontaneous Microcavity-
Polariton Coherence across the Parametric Threshold:

Quantum Monte Carlo Studies, Phys. Rev. B 72, 125335
(2005).

[39] L. Giorgetti, I. Carusotto, and Y. Castin, Semiclassical Field
Method for the Equilibrium Bose Gas and Application to
Thermal Vortices in Two Dimensions, Phys. Rev. A 76,
013613 (2007).

[40] C. J. Foster, P. B. Blakie, and M. J. Davis, Vortex Pairing
in Two-Dimensional Bose Gases, Phys. Rev. A 81, 023623
(2010).

[41] P. Drummond and D. Walls, Quantum Theory of Optical
Bistability. I. Nonlinear Polarisability model, J. Phys. A 13,
725 (1980).

[42] L. M. Sieberer, S. D. Huber, E. Altman, and S. Diehl,
Nonequilibrium Functional Renormalization for Driven-
Dissipative Bose-Einstein Condensation, Phys. Rev. B 89,
134310 (2014).

[43] R. Spano, J. Cuadra, C. Lingg, D. Sanvitto, M. D. Martin,
P. R. Eastham, M. van der Poel, J. M. Hvam, and L. Viña,
Build Up of Off-Diagonal Long-Range Order in Micro-
cavity Exciton-Polaritons across the Parametric Threshold,
Opt. Express 21, 10792 (2013).

[44] P. A. Murthy, I. Boettcher, L. Bayha, M. Holzmann, D.
Kedar, M. Neidig, M. G. Ries, A. N. Wenz, G. Zürn, and S.
Jochim, Observation of the Berezinskii-Kosterlitz-Thouless
Phase Transition in an Ultracold Fermi Gas, Phys. Rev.
Lett. 115, 010401 (2015).

[45] J. Keeling, F. Marchetti, M. Szymańska, and P. Littlewood,
Collective Coherence in Planar Semiconductor Microcav-
ities, Semicond. Sci. Technol. 22, R1 (2007).

[46] G. R. Dennis, J. J. Hope, and M. T. Johnsson, XMDS2:
Fast, Scalable Simulation of Coupled Stochastic Partial
Differential Equations, Comput. Phys. Commun. 184, 201
(2013).

[47] L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P.
Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J.
Bloch, Interactions in Confined Polariton Condensates,
Phys. Rev. Lett. 106, 126401 (2011).

NONEQUILIBRIUM PHASE TRANSITION IN A TWO- … PHYS. REV. X 5, 041028 (2015)

041028-9

http://dx.doi.org/10.1103/PhysRevB.62.R16247
http://dx.doi.org/10.1209/0295-5075/102/67007
http://dx.doi.org/10.1209/0295-5075/102/67007
http://dx.doi.org/10.1103/PhysRevA.39.4675
http://dx.doi.org/10.1103/PhysRevB.75.195331
http://dx.doi.org/10.1103/PhysRevB.71.115301
http://dx.doi.org/10.1103/PhysRevB.71.115301
http://dx.doi.org/10.1103/PhysRevB.75.075332
http://link.aps.org/supplemental/10.1103/PhysRevX.5.041028
http://link.aps.org/supplemental/10.1103/PhysRevX.5.041028
http://link.aps.org/supplemental/10.1103/PhysRevX.5.041028
http://link.aps.org/supplemental/10.1103/PhysRevX.5.041028
http://link.aps.org/supplemental/10.1103/PhysRevX.5.041028
http://link.aps.org/supplemental/10.1103/PhysRevX.5.041028
http://link.aps.org/supplemental/10.1103/PhysRevX.5.041028
http://dx.doi.org/10.1103/PhysRevA.76.043807
http://dx.doi.org/10.1103/PhysRevA.76.043807
http://dx.doi.org/10.1103/PhysRevB.72.125335
http://dx.doi.org/10.1103/PhysRevB.72.125335
http://dx.doi.org/10.1103/PhysRevA.76.013613
http://dx.doi.org/10.1103/PhysRevA.76.013613
http://dx.doi.org/10.1103/PhysRevA.81.023623
http://dx.doi.org/10.1103/PhysRevA.81.023623
http://dx.doi.org/10.1088/0305-4470/13/2/034
http://dx.doi.org/10.1088/0305-4470/13/2/034
http://dx.doi.org/10.1103/PhysRevB.89.134310
http://dx.doi.org/10.1103/PhysRevB.89.134310
http://dx.doi.org/10.1364/OE.21.010792
http://dx.doi.org/10.1103/PhysRevLett.115.010401
http://dx.doi.org/10.1103/PhysRevLett.115.010401
http://dx.doi.org/10.1088/0268-1242/22/5/R01
http://dx.doi.org/10.1016/j.cpc.2012.08.016
http://dx.doi.org/10.1016/j.cpc.2012.08.016
http://dx.doi.org/10.1103/PhysRevLett.106.126401

