159 research outputs found

    Soft-collinear resummation in deeply virtual Compton scattering

    Full text link
    We derive an all order resummation formula for the deeply virtual Compton scattering (DVCS) amplitude, which takes into account soft gluon exchanges in the non-singlet quark coefficient function. We identify the ladder diagrams responsible in light-like gauge for [alphaS log^2 (x +/- xi)]^n contributions. The resummed series results in a simple closed expression.Comment: 4 pages, 4 figure

    Double logarithms resummation in exclusive processes : the surprising behavior of DVCS

    Full text link
    Double logarithms resummation has been much studied in inclusive as well as exclusive processes. The Sudakov mechanism has often be the crucial tool to exponentiate potentially large contributions to amplitudes or cross-sections near phase-space boundaries. We report on a recent work where a very different pattern emerges : the DVCS quark coefficient function C(x,\xi) develops, near the particular point x=\xi, a non-alternate series in \alpha_s^n log^{2n}(x-\xi) which may be resummed in a cosh[K sqrt \alpha_s log(x-\xi)] factor. This result is at odds with the known result for the corresponding coefficient function for the pion transition form factor near the end point C(z) although they are much related through a z -> x/\xi correspondence.Comment: 9 pages, 1 figure, Presented at the Low x workshop, May 30 - June 4 2013, Rehovot and Eilat, Israe

    A consistent model for \pi N transition distribution amplitudes and backward pion electroproduction

    Full text link
    The extension of the concept of generalized parton distributions leads to the introduction of baryon to meson transition distribution amplitudes (TDAs), non-diagonal matrix elements of the nonlocal three quark operator between a nucleon and a meson state. We present a general framework for modelling nucleon to pion (πN\pi N) TDAs. Our main tool is the spectral representation for \pi N TDAs in terms of quadruple distributions. We propose a factorized Ansatz for quadruple distributions with input from the soft-pion theorem for \pi N TDAs. The spectral representation is complemented with a D-term like contribution from the nucleon exchange in the cross channel. We then study backward pion electroproduction in the QCD collinear factorization approach in which the non-perturbative part of the amplitude involves \pi N TDAs. Within our two component model for \pi N TDAs we update previous leading-twist estimates of the unpolarized cross section. Finally, we compute the transverse target single spin asymmetry as a function of skewness. We find it to be sizable in the valence region and sensitive to the phenomenological input of our \pi N TDA model.Comment: 39 pages, 9 figure

    Towards a solution of the charmonium production controversy: k_t-factorization versus color octet mechanism

    Get PDF
    The cross section of \chi_{cJ} hadroproduction is calculated in the k_t-factorization approach. We find a significant contribution of the \chi_{c1} state due to non-applicability of the Landau-Yang theorem because of off-shell gluons. The results are in agreement with data and, in contrast to the collinear factorization, show a dominance of the color singlet part and a strong suppression of the color octet contribution. Our results could therefore lead to a solution of the longstanding controversy between the color singlet model and the color octet mechanism.Comment: 4 pages, 5 figures, final PRL versio

    Effective Action for High-Energy Scattering in Gravity

    Full text link
    The multi-Regge effective action is derived directly from the linearized gravity action. After excluding the redundant field components we separate the fields into momentum modes and integrate over modes which correspond neither to the kinematics of scattering nor to the one of exchanged particles. The effective vertices of scattering and of particle production are obtained as sums of the contributions from the triple and quartic interaction terms and the fields in the effective action are defined in terms of the two physical components of the metric fluctuation.Comment: 15 pages, LATE

    Solvability and PT-symmetry in a double-well model with point interactions

    Full text link
    We show that and how point interactions offer one of the most suitable guides towards a quantitative analysis of properties of certain specific non-Hermitian (usually called PT-symmetric) quantum-mechanical systems. A double-well model is chosen, an easy solvability of which clarifies the mechanisms of the unavoided level crossing and of the spontaneous PT-symmetry breaking. The latter phenomenon takes place at a certain natural boundary of the domain of the "acceptable" parameters of the model. Within this domain the model mediates a nice and compact explicit illustration of the not entirely standard probabilistic interpretation of the physical bound states in the very recently developed (so called PT symmetric or, in an alternative terminology, pseudo-Hermitian) new, fairly exciting and very quickly developing branch of Quantum Mechanics.Comment: 24 p., written for the special journal issue "Singular Interactions in Quantum Mechanics: Solvable Models". Will be also presented to the int. conference "Pseudo-Hermitian Hamiltonians in Quantum Physics III" (Instanbul, Koc University, June 20 - 22, 2005) http://home.ku.edu.tr/~amostafazadeh/workshop/workshop.ht

    Relativistic treatment of harmonics from impurity systems in quantum wires

    Get PDF
    Within a one particle approximation of the Dirac equation we investigate a defect system in a quantum wire. We demonstrate that by minimally coupling a laser field of frequency omega to such an impurity system, one may generate harmonics of multiples of the driving frequency. In a multiple defect system one may employ the distance between the defects in order to tune the cut-off frequency.Comment: 9 pages Latex, 8 eps figures, section added, numerics improve

    Symmetry Properties of the Effective Action for High-Energy Scattering in QCD

    Full text link
    We study the effective action describing high-energy scattering processes in the multi-Regge limit of QCD, which should provide the starting point for a new attempt to overcome the limitations of the leading logarithmic and the eikonal approximations. The action can be obtained via simple graphical rules or by integrating in the QCD functional integral over momentum modes of gluon and quark fields that do not appear explicitely as scattering or exchanged particles in the considered processes. The supersymmetry is used to obtain the terms in the action involving quarks fields from the pure gluonic ones. We observe a Weizs\"acker - Williams type relations between terms describing scattering and production of particles.Comment: 37 pages LATEX, 1 Table and 7 figures using package FEYNMA

    Direct J/Psi hadroproduction in k_\perp-factorization and the color octet mechanism

    Get PDF
    The hadroproduction of direct J/Psi in the framework of the k_\perp-factorization approach is studied. The color-singlet contribution is essentially larger than in the collinear approach but is still an order of magnitude below the data. The deficit may be well described by the color octet contribution with the value of the matrix element substantially decreased in comparison with the fits in the collinear factorization. This should lead to a reduction of the large transverse polarization, predicted in the collinear approach.Comment: 3 pages, LaTeX, 2 eps figures, final PRD versio

    A Large Hadron Electron Collider at CERN

    Full text link
    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb1^{-1}. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC
    corecore