9 research outputs found

    OGLE-2017-BLG-1038: A Possible Brown-dwarf Binary Revealed by Spitzer Microlensing Parallax

    Full text link
    We report the analysis of microlensing event OGLE-2017-BLG-1038, observed by the Optical Gravitational Lensing Experiment, Korean Microlensing Telescope Network, and Spitzer telescopes. The event is caused by a giant source star in the Galactic Bulge passing over a large resonant binary lens caustic. The availability of space-based data allows the full set of physical parameters to be calculated. However, there exists an eightfold degeneracy in the parallax measurement. The four best solutions correspond to very-low-mass binaries near (M1=17050+40MJM_1 = 170^{+40}_{-50} M_J and M2=11030+20MJM_2 = 110^{+20}_{-30} M_J), or well below (M1=22.50.4+0.7MJM_1 = 22.5^{+0.7}_{-0.4} M_J and M2=13.30.3+0.4MJM_2 = 13.3^{+0.4}_{-0.3} M_J) the boundary between stars and brown dwarfs. A conventional analysis, with scaled uncertainties for Spitzer data, implies a very-low-mass brown dwarf binary lens at a distance of 2 kpc. Compensating for systematic Spitzer errors using a Gaussian process model suggests that a higher mass M-dwarf binary at 6 kpc is equally likely. A Bayesian comparison based on a galactic model favors the larger-mass solutions. We demonstrate how this degeneracy can be resolved within the next ten years through infrared adaptive-optics imaging with a 40 m class telescope.Comment: 20 pages, 11 figures, 4 table

    OGLE-2014-BLG-0319 : a sub-Jupiter-mass planetary event encountered degeneracy with different mass ratios and lens-source relative proper motions

    Get PDF
    We report the discovery of a sub-Jovian-mass planet, OGLE-2014-BLG-0319Lb. The characteristics of this planet will be added into a future extended statistical analysis of the Microlensing Observations in Astrophysics (MOA) collaboration. The planetary anomaly of the light curve is characterized by MOA and OGLE survey observations and results in three degenerate models with different planetary-mass ratios of q = (10.3, 6.6, 4.5) × 10−4. We find that the last two models require unreasonably small lens-source relative proper motions of μrel ∼ 1 mas yr−1. Considering Galactic prior probabilities, we rule out these two models from the final result. We conduct a Bayesian analysis to estimate physical properties of the lens system using a Galactic model and find that the lens system is composed of a 0.490.27+0.35 MJup{0.49}_{-0.27}^{+0.35}\ {M}_{\mathrm{Jup}} sub-Jovian planet orbiting a 0.470.25+0.33 M{0.47}_{-0.25}^{+0.33}\ {M}_{\odot } M dwarf near the Galactic Bulge. This analysis demonstrates that Galactic priors are useful to resolve this type of model degeneracy. This is important for estimating the mass-ratio function statistically. However, this method would be unlikely successful in shorter timescale events, which are mostly due to low-mass objects, like brown dwarfs or free-floating planets. Therefore, careful treatment is needed for estimating the mass-ratio function of the companions around such low-mass hosts, which only the microlensing can probe

    OGLE-2017-BLG-1038 : a possible Brown-dwarf binary revealed by spitzer microlensing parallax

    Get PDF
    We report the analysis of microlensing event OGLE-2017-BLG-1038, observed by the Optical Gravitational Lensing Experiment, Korean Microlensing Telescope Network, and Spitzer telescopes. The event is caused by a giant source star in the Galactic Bulge passing over a large resonant binary-lens caustic. The availability of space-based data allows the full set of physical parameters to be calculated. However, there exists an eightfold degeneracy in the parallax measurement. The four best solutions correspond to very-low-mass binaries near ( M1=170−50+40MJ and M2=110−30+20MJ ), or well below ( M1=22.5−0.4+0.7MJ and M2=13.3−0.3+0.4MJ ) the boundary between stars and brown dwarfs. A conventional analysis, with scaled uncertainties for Spitzer data, implies a very-low-mass brown-dwarf binary lens at a distance of 2 kpc. Compensating for systematic Spitzer errors using a Gaussian process model suggests that a higher mass M-dwarf binary at 6 kpc is equally likely. A Bayesian comparison based on a galactic model favors the larger-mass solutions. We demonstrate how this degeneracy can be resolved within the next 10 years through infrared adaptive-optics imaging with a 40 m class telescope

    Unconventional origin of supersoft X-ray emission from a white dwarf binary

    No full text
    Supersoft X-ray sources are stellar objects that emit X-rays with temperatures of about 1 million kelvin and luminosities well in excess of what can be produced by stellar coronae. It has generally been presumed that the objects in this class are binary star systems in which mass transfer leads to nuclear fusion on the surface of a white dwarf. Classical novae—the runaway fusion events on the surfaces of white dwarfs—generally have supersoft phases, and it is often stated that the bright steady supersoft X-ray sources seen from white dwarfs accreting mass at a high rate are undergoing steady nuclear fusion. Here, we report the discovery of a transient supersoft source in the Small Magellanic Cloud without any signature of nuclear fusion having taken place. This discovery indicates that the X-ray emission probably comes from a ‘spreading layer’  —a belt on the surface of the white dwarf near the inner edge of the accretion disk in which a large fraction of the total accretion energy is emitted—and (albeit more tentatively) that the accreting white dwarf is relatively massive. We thus establish that the presence of a supersoft source cannot always be used as a tracer of nuclear fusion, in contradiction with decades-old consensus about the nature of supersoft emission. </p

    Ds+ meson production at central rapidity in proton–proton collisions at √s=7 TeV

    No full text
    The pT-differential inclusive production cross section of the prompt charm-strange meson Ds+ in the rapidity range |y|<0.5 was measured in proton–proton collisions at s=7 TeV at the LHC using the ALICE detector. The analysis was performed on a data sample of 2.98×108 events collected with a minimum-bias trigger. The corresponding integrated luminosity is Lint=4.8 nb−1. Reconstructing the decay Ds+→ϕπ+, with ϕ→K−K+, and its charge conjugate, about 480 Ds± mesons were counted, after selection cuts, in the transverse momentum range 2<pT<12 GeV/c. The results are compared with predictions from models based on perturbative QCD. The ratios of the cross sections of four D meson species (namely D0, D+, D⁎+ and Ds+) were determined both as a function of pT and integrated over pT after extrapolating to full pT range, together with the strangeness suppression factor in charm fragmentation. The obtained values are found to be compatible within uncertainties with those measured by other experiments in e+e−, ep and pp interactions at various centre-of-mass energies

    Coherent J/ψ photoproduction in ultra-peripheral Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    The ALICE Collaboration has made the first measurement at the LHC of J/ψ photoproduction in ultra-peripheral Pb–Pb collisions at sNN=2.76 TeV. The J/ψ is identified via its dimuon decay in the forward rapidity region with the muon spectrometer for events where the hadronic activity is required to be minimal. The analysis is based on an event sample corresponding to an integrated luminosity of about 55 μb−1. The cross section for coherent J/ψ production in the rapidity interval −3.6<y<−2.6 is measured to be dσJ/ψcoh/dy=1.00±0.18(stat)−0.26+0.24(syst) mb. The result is compared to theoretical models for coherent J/ψ production and found to be in good agreement with those models which include nuclear gluon shadowing
    corecore