4 research outputs found

    Novel dressing materials accelerating wound healing made from dibutyrylchitin

    Get PDF
    Dibutyrylchitin (DBC), a soluble chitin derivative, is a polymer with confirmed biological properties. DBC was obtained in the reaction of shrimp chitin with butyric anhydride, carried out under heterogeneous condition, in which perchloric acid was used as a catalyst of reaction. Production of DBC batches was carried out on a half - technical scale line. If DBC parties were examined by infrared spectrometry, size exclusion chromatography and viscometry. DBC with molar mass of 132 x 10(3) daltons was used for the manufacturing of DBC fibres and DBC non-woven materials. DBC non-woven fabrics after gamma-sterilisation were applied to a group of nine patients with different indications. DBC dressing materials were used exluding the use of other medical products. Satisfactory results of wound healing were achieved in most cases, especially in cases of burn wounds and postoperative/posttraumatic wounds and various other conditions causing skin/epidermis loss

    Physicochemical characteristics of chitin-polyester systems in dependence on their composition

    No full text
    In order to improve the properties of their individual components, the compositions of dibutyrylchitin (DBC) and aliphatic polyesters (PCLG) were prepared and examined. The studied systems are homogeneous in a wide range of composition and molar masses of their components. The homogeneities of the blends made it possible to form smooth and transparent films, which were investigated by mechanical testing. It was found that the chemical structure and molar mass of a polyester component had an effect on mechanical properties of the systems. The films were subjected to hydrolytic degradation in media of various pH values (4.0, 7.4 and 13.0) at 37 °C. Furthermore, it was found that the molar mass and composition of the PCLG component clearly affected the rate of hydrolysis of the studied systems. The effect of hydrophilicity of the DBC/PCLG blends on degradation rate was also investigated. Consequently, by an appropriate choice of the components it is possible to control the profile of hydrolytic degradation of the DBC/PCLG systems

    The Exercise-Induced Irisin Is Associated with Improved Levels of Glucose Homeostasis Markers in Pregnant Women Participating in 8-Week Prenatal Group Fitness Program: A Pilot Study

    No full text
    Background. Both exercise and pregnancy influence serum irisin concentration. Aim. To determine how the interaction of pregnancy and exercise affects irisin level and whether various patterns of exercise adherence had different effect on irisin concentration. Methods. It was a one-group pretest-posttest study among 9 Caucasian nulliparous healthy women in normal pregnancy (age 23±3 years, 21±2 weeks of gestation; mean ± SD) who participated in 8-week group fitness program. Before and after exercise intervention, we determined serum concentrations of irisin and selected parameters of lipid profile and glucose homeostasis markers. Results. In active women, irisin slightly decreased with the development of pregnancy. After 8 weeks of exercising, irisin correlated negatively with fasting glucose (R = −0.922; p=0.001), glycated hemoglobin (R = −0.784; p=0.012), and insulin concentrations (R = −0.845; p=0.004). In women exercising below recommended level, we observed a significant drop in irisin concentration, whereas in women exercising at least three times a week this myokine slightly increased (31% difference; 90% confidence limits ±28; a large, clear effect). Conclusions. Irisin stimulated by prenatal exercise may improve glucose homeostasis markers in healthy women and compensate for metabolic changes induced by pregnancy. Moreover, the frequency of exercise may regulate the changes in exercise-induced irisin concentration
    corecore