811 research outputs found

    Open FRW model in Loop Quantum Cosmology

    Full text link
    Open FRW model in Loop Quantum Cosmology is under consideration. The left and right invariant vector fields and holonomies along them are studied. It is shown that in the hyperbolic geometry of k=1k=-1 it is possible to construct a suitable loop which provides us with quantum scalar constraint originally introduced by Vandersloot. The quantum scalar constraint operator with negative cosmological constant is proved to be essentially self-adjoint.Comment: 12 pages, no figures, late

    The status of Quantum Geometry in the dynamical sector of Loop Quantum Cosmology

    Full text link
    This letter is motivated by the recent papers by Dittrich and Thiemann and, respectively, by Rovelli discussing the status of Quantum Geometry in the dynamical sector of Loop Quantum Gravity. Since the papers consider model examples, we also study the issue in the case of an example, namely on the Loop Quantum Cosmology model of space-isotropic universe. We derive the Rovelli-Thiemann-Ditrich partial observables corresponding to the quantum geometry operators of LQC in both Hilbert spaces: the kinematical one and, respectively, the physical Hilbert space of solutions to the quantum constraints. We find, that Quantum Geometry can be used to characterize the physical solutions, and the operators of quantum geometry preserve many of their kinematical properties.Comment: Latex, 12 page

    Closed FRW model in Loop Quantum Cosmology

    Get PDF
    The basic idea of the LQC applies to every spatially homogeneous cosmological model, however only the spatially flat (so called k=0k=0) case has been understood in detail in the literature thus far. In the closed (so called: k=1) case certain technical difficulties have been the obstacle that stopped the development. In this work the difficulties are overcome, and a new LQC model of the spatially closed, homogeneous, isotropic universe is constructed. The topology of the spacelike section of the universe is assumed to be that of SU(2) or SO(3). Surprisingly, according to the results achieved in this work, the two cases can be distinguished from each other just by the local properties of the quantum geometry of the universe. The quantum hamiltonian operator of the gravitational field takes the form of a difference operator, where the elementary step is the quantum of the 3-volume derived in the flat case by Ashtekar, Pawlowski and Singh. The mathematical properties of the operator are studied: it is essentially self-adjoint, bounded from above by 0, the 0 itself is not an eigenvalue, the eigenvectors form a basis. An estimate on the dimension of the spectral projection on any finite interval is provided.Comment: 19 pages, latex, no figures, high quality, nea

    Transcending Big Bang in Loop Quantum Cosmology: Recent Advances

    Get PDF
    We discuss the way non-perturbative quantization of cosmological spacetimes in loop quantum cosmology provides insights on the physics of Planck scale and the resolution of big bang singularity. In recent years, rigorous examination of mathematical and physical aspects of the quantum theory has led to a consistent quantization which is consistent and physically viable and some early ideas have been ruled out. The latter include so called `physical effects' originating from modifications to inverse scale factors in the flat models. The singularity resolution is understood to originate from the non-local nature of curvature in the quantum theory and the underlying polymer representation. Using an exactly solvable model various insights have been gained. The model predicts a generic occurrence of bounce for states in the physical Hilbert space and a supremum for the spectrum of the energy density operator. It also provides answers to the growth of fluctuations, showing that semi-classicality is preserved to an amazing degree across the bounce.Comment: Invited plenary talk at the Sixth International Conference on Gravitation and Cosmology, IUCAA (Pune). 13 pages, 3 figure

    Quantum constraints, Dirac observables and evolution: group averaging versus Schroedinger picture in LQC

    Full text link
    A general quantum constraint of the form C=T2BIHC= - \partial_T^2 \otimes B - I\otimes H (realized in particular in Loop Quantum Cosmology models) is studied. Group Averaging is applied to define the Hilbert space of solutions and the relational Dirac observables. Two cases are considered. In the first case, the spectrum of the operator (1/2)π2BH(1/2)\pi^2 B - H is assumed to be discrete. The quantum theory defined by the constraint takes the form of a Schroedinger-like quantum mechanics with a generalized Hamiltonian B1H\sqrt{B^{-1} H}. In the second case, the spectrum is absolutely continuous and some peculiar asymptotic properties of the eigenfunctions are assumed. The resulting Hilbert space and the dynamics are characterized by a continuous family of the Schroedinger-like quantum theories. However, the relational observables mix different members of the family. Our assumptions are motivated by new Loop Quantum Cosmology models of quantum FRW spacetime. The two cases considered in the paper correspond to the negative and, respectively, positive cosmological constant. Our results should be also applicable in many other general relativistic contexts.Comment: RevTex4, 32 page

    Loop Quantum Gravity and the The Planck Regime of Cosmology

    Full text link
    The very early universe provides the best arena we currently have to test quantum gravity theories. The success of the inflationary paradigm in accounting for the observed inhomogeneities in the cosmic microwave background already illustrates this point to a certain extent because the paradigm is based on quantum field theory on the curved cosmological space-times. However, this analysis excludes the Planck era because the background space-time satisfies Einstein's equations all the way back to the big bang singularity. Using techniques from loop quantum gravity, the paradigm has now been extended to a self-consistent theory from the Planck regime to the onset of inflation, covering some 11 orders of magnitude in curvature. In addition, for a narrow window of initial conditions, there are departures from the standard paradigm, with novel effects, such as a modification of the consistency relation involving the scalar and tensor power spectra and a new source for non-Gaussianities. Thus, the genesis of the large scale structure of the universe can be traced back to quantum gravity fluctuations \emph{in the Planck regime}. This report provides a bird's eye view of these developments for the general relativity community.Comment: 23 pages, 4 figures. Plenary talk at the Conference: Relativity and Gravitation: 100 Years after Einstein in Prague. To appear in the Proceedings to be published by Edition Open Access. Summarizes results that appeared in journal articles [2-13

    Dynamics for a 2-vertex Quantum Gravity Model

    Get PDF
    We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N) invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.Comment: 28 pages, v2: typos correcte

    Numerical loop quantum cosmology: an overview

    Get PDF
    A brief review of various numerical techniques used in loop quantum cosmology and results is presented. These include the way extensive numerical simulations shed insights on the resolution of classical singularities, resulting in the key prediction of the bounce at the Planck scale in different models, and the numerical methods used to analyze the properties of the quantum difference operator and the von Neumann stability issues. Using the quantization of a massless scalar field in an isotropic spacetime as a template, an attempt is made to highlight the complementarity of different methods to gain understanding of the new physics emerging from the quantum theory. Open directions which need to be explored with more refined numerical methods are discussed.Comment: 33 Pages, 4 figures. Invited contribution to appear in Classical and Quantum Gravity special issue on Non-Astrophysical Numerical Relativit
    corecore