9 research outputs found

    PNKP Mutations Identified by Whole-Exome Sequencing in a Norwegian Patient with Sporadic Ataxia and Edema

    Get PDF
    We identified PNKP mutations in a Norwegian woman with AOA. This patient had the typical findings with cognitive dysfunction, peripheral neuropathy, cerebellar dysarthria, horizontal nystagmus, oculomotor apraxia, and severe truncal and appendicular ataxia. In addition, she had hypoalbuminemia and massive lower limb edema which showed some improvement with treatment. Exome sequencing identified two heterozygous mutations, one in exon 14 (c.1196T>C, p.Leu399Pro) and one in exon 16 (c.1393_1396del, p.Glu465*). This is the first non-Portuguese patient with AOA due to PNKP mutations and provides independent verification that PNKP mutations cause AOA.publishedVersio

    Meta-analysis of whole-exome sequencing data from two independent cohorts finds no evidence for rare variant enrichment in Parkinson disease associated loci

    Get PDF
    Parkinson disease (PD) is a complex neurodegenerative disorder influenced by both environmental and genetic factors. While genome wide association studies have identified several susceptibility loci, many causal variants and genes underlying these associations remain undetermined. Identifying these is essential in order to gain mechanistic insight and identify biological pathways that may be targeted therapeutically. We hypothesized that gene-based enrichment of rare mutations is likely to be found within susceptibility loci for PD and may help identify causal genes. Whole-exome sequencing data from two independent cohorts were analyzed in tandem and by meta-analysis and a third cohort genotyped using the NeuroX-array was used for replication analysis. We employed collapsing methods (burden and the sequence kernel association test) to detect gene-based enrichment of rare, protein-altering variation within established PD susceptibility loci. Our analyses showed trends for three genes (GALC, PARP9 and SEC23IP), but none of these survived multiple testing correction. Our findings provide no evidence of rare mutation enrichment in genes within PD-associated loci, in our datasets. While not excluding that rare mutations in these genes may influence the risk of idiopathic PD, our results suggest that, if such effects exist, much larger sequencing datasets will be required for their detection.publishedVersio

    Meta-analysis of whole-exome sequencing data from two independent cohorts finds no evidence for rare variant enrichment in Parkinson disease associated loci

    Get PDF
    Parkinson disease (PD) is a complex neurodegenerative disorder influenced by both environmental and genetic factors. While genome wide association studies have identified several susceptibility loci, many causal variants and genes underlying these associations remain undetermined. Identifying these is essential in order to gain mechanistic insight and identify biological pathways that may be targeted therapeutically. We hypothesized that gene-based enrichment of rare mutations is likely to be found within susceptibility loci for PD and may help identify causal genes. Whole-exome sequencing data from two independent cohorts were analyzed in tandem and by meta-analysis and a third cohort genotyped using the NeuroX-array was used for replication analysis. We employed collapsing methods (burden and the sequence kernel association test) to detect gene-based enrichment of rare, protein-altering variation within established PD susceptibility loci. Our analyses showed trends for three genes (GALC, PARP9 and SEC23IP), but none of these survived multiple testing correction. Our findings provide no evidence of rare mutation enrichment in genes within PD-associated loci, in our datasets. While not excluding that rare mutations in these genes may influence the risk of idiopathic PD, our results suggest that, if such effects exist, much larger sequencing datasets will be required for their detection.publishedVersio

    Defective PITRM1 mitochondrial peptidase is associated with Aβ amyloidotic neurodegeneration.

    Get PDF
    Mitochondrial dysfunction and altered proteostasis are central features of neurodegenerative diseases. The pitrilysin metallopeptidase 1 (PITRM1) is a mitochondrial matrix enzyme, which digests oligopeptides, including the mitochondrial targeting sequences that are cleaved from proteins imported across the inner mitochondrial membrane and the mitochondrial fraction of amyloid beta (Aβ). We identified two siblings carrying a homozygous PITRM1 missense mutation (c.548G>A, p.Arg183Gln) associated with an autosomal recessive, slowly progressive syndrome characterised by mental retardation, spinocerebellar ataxia, cognitive decline and psychosis. The pathogenicity of the mutation was tested in vitro, in mutant fibroblasts and skeletal muscle, and in a yeast model. A Pitrm1(+/-) heterozygous mouse showed progressive ataxia associated with brain degenerative lesions, including accumulation of Aβ-positive amyloid deposits. Our results show that PITRM1 is responsible for significant Aβ degradation and that impairment of its activity results in Aβ accumulation, thus providing a mechanistic demonstration of the mitochondrial involvement in amyloidotic neurodegeneration.Cariplo2011‐0526 ERCFP7‐322424 Swedish Research Council Helse Vest911810 Forening for muskelsyke Italian Ministry of HealthGR‐2010‐2306‐75

    Analysis of Single Nucleotide Variants (SNVs) Induced by Passages of Equine Influenza Virus H3N8 in Embryonated Chicken Eggs

    No full text
    Vaccination is an effective method for the prevention of influenza virus infection. Many manufacturers use embryonated chicken eggs (ECE) for the propagation of vaccine strains. However, the adaptation of viral strains during subsequent passages can lead to additional virus evolution and lower effectiveness of the resulting vaccines. In our study, we analyzed the distribution of single nucleotide variants (SNVs) of equine influenza virus (EIV) during passaging in ECE. Viral RNA from passage 0 (nasal swabs), passage 2 and 5 was sequenced using next generation technology. In total, 50 SNVs with an occurrence frequency above 2% were observed, 29 of which resulted in amino acid changes. The highest variability was found in passage 2, with the most variable segment being IV encoding hemagglutinin (HA). Three variants, HA (W222G), PB2 (A377E) and PA (R531K), had clearly increased frequency with the subsequent passages, becoming dominant. None of the five nonsynonymous HA variants directly affected the major antigenic sites; however, S227P was previously reported to influence the antigenicity of EIV. Our results suggest that although host-specific adaptation was observed in low passages of EIV in ECE, it should not pose a significant risk to influenza vaccine efficacy

    Impact of processing method on donated human breast milk microRNA content.

    No full text
    Pasteurization of donated human milk preserves it for storage and makes it safe for feeding, but at the expense of its composition, nutritional values and functions. Here, we aimed to investigate the impact of Holder Pasteurization (HoP) and High Pressure Processing (HPP) methods on miRNA in human milk and to evaluate impact of these changes on miRNA functions. Milk samples obtained from women in 50th day of lactation (n = 3) were subjected either to HoP, HPP or remained unpasteurized as a control. Subsequently, miRNA was isolated from whole material and exosomal fraction and sequenced with Illumina NextSeq 500. Sequencing data were processed, read counts were mapped to miRNA and analyzed both quantitatively with DESeq2 and functionally with DIANA mirPath v.3. While HPP caused statistically insignificant decrease in number of miRNA reads compared to unprocessed material, HoP led to 82-fold decrease in whole material (p = 0.0288) and 302-fold decrease in exosomes (p = 0.0021) not leaving enough reads for further analysis. Changes in composition of miRNA fraction before and after HPP indicated uneven stability of individual miRNAs under high pressure conditions, with miR-30d-5p identified as relatively stable and miR-29 family as sensitive to HPP. Interestingly, about 2/3 of unprocessed milk miRNA content consists of only 10 distinct miRNAs with miR-148a-3p at the top. Functional analysis of most abundant human milk miRNAs showed their involvement in signaling pathways, cell communication, proliferation and metabolism that are obviously important in rapidly growing infants. Functions of miRNAs which suffered the greatest depletion during HPP were similar to roles of the majority of unprocessed human milk's miRNA, which indicates that those functions may be weakened although not completely lost. Our findings indicate that HPP is less detrimental to human milk miRNAs than HoP and should be considered in further research on recommended processing procedures for human milk banks

    Meta-analysis of whole-exome sequencing data from two independent cohorts finds no evidence for rare variant enrichment in Parkinson disease associated loci

    No full text
    Parkinson disease (PD) is a complex neurodegenerative disorder influenced by both environmental and genetic factors. While genome wide association studies have identified several susceptibility loci, many causal variants and genes underlying these associations remain undetermined. Identifying these is essential in order to gain mechanistic insight and identify biological pathways that may be targeted therapeutically. We hypothesized that gene-based enrichment of rare mutations is likely to be found within susceptibility loci for PD and may help identify causal genes. Whole-exome sequencing data from two independent cohorts were analyzed in tandem and by meta-analysis and a third cohort genotyped using the NeuroX-array was used for replication analysis. We employed collapsing methods (burden and the sequence kernel association test) to detect gene-based enrichment of rare, protein-altering variation within established PD susceptibility loci. Our analyses showed trends for three genes (GALC, PARP9 and SEC23IP), but none of these survived multiple testing correction. Our findings provide no evidence of rare mutation enrichment in genes within PD-associated loci, in our datasets. While not excluding that rare mutations in these genes may influence the risk of idiopathic PD, our results suggest that, if such effects exist, much larger sequencing datasets will be required for their detection

    ADCK3 mutations with epilepsy, stroke-like episodes and ataxia: a POLG mimic?

    Get PDF
    Background and purpose: Defects of coenzyme Q10 (CoQ10) metabolism cause a variety of disorders ranging from isolated myopathy to multisystem involvement. ADCK3 is one of several genes associated with CoQ10 deficiency that presents with progressive cerebellar ataxia, epilepsy, migraine and psychiatric disorders. Diagnosis is challenging due to the wide clinical spectrum and overlap with other mitochondrial disorders. Methods: A detailed description of three new patients and one previously reported patient from three Norwegian families with novel and known ADCK3 mutations is provided focusing on the epileptic semiology and response to treatment. Mutations were identified by whole exome sequencing and in two measurement of skeletal muscle CoQ10 was performed. Results: All four patients presented with childhood-onset epilepsy and progressive cerebellar ataxia. Three patients had epilepsia partialis continua and stroke-like episodes affecting the posterior brain. Electroencephalography showed focal epileptic activity in the occipital and temporal lobes. Genetic investigation revealed ADCK3 mutations in all patients including a novel change in exon 15: c.T1732G, p.F578V. There was no apparent genotype−phenotype correlation. Conclusion: ADCK3 mutations can cause a combination of progressive ataxia and acute epileptic encephalopathy with stroke-like episodes. The clinical, radiological and electrophysiological features of this disorder mimic the phenotype of polymerase gamma (POLG) related encephalopathy and it is therefore suggested that ADCK3 mutations be considered in the differential diagnosis of mitochondrial encephalopathy with POLG-like features
    corecore