215 research outputs found
Reduced immunogenicity of a live Salmonella enterica serovar Typhimurium vaccine in aged mice
IntroductionNon-typhoidal Salmonella (NTS) is responsible for a high burden of foodborne infections and deaths worldwide. In the United States, NTS infections are the leading cause of hospitalizations and deaths due to foodborne illnesses, and older adults (≥65 years) are disproportionately affected by Salmonella infections. Due to this public health concern, we have developed a live attenuated vaccine, CVD 1926 (I77 ΔguaBA ΔclpP ΔpipA ΔhtrA), against Salmonella enterica serovar Typhimurium, a common serovar of NTS. Little is known about the effect of age on oral vaccine responses, and due to the decline in immune function with age, it is critical to evaluate vaccine candidates in older age groups during early product development.MethodsIn this study, adult (six-to-eight-week-old) and aged (18-month-old) C57BL/6 mice received two doses of CVD 1926 (109 CFU/dose) or PBS perorally, and animals were evaluated for antibody and cell-mediated immune responses. A separate set of mice were immunized and then pre-treated with streptomycin and challenged orally with 108 CFU of wild-type S. Typhimurium SL1344 at 4 weeks postimmunization.ResultsCompared to PBS-immunized mice, adult mice immunized with CVD 1926 had significantly lower S. Typhimurium counts in the spleen, liver, and small intestine upon challenge. In contrast, there were no differences in bacterial loads in the tissues of vaccinated versus PBS aged mice. Aged mice exhibited reduced Salmonella-specific antibody titers in the serum and feces following immunization with CVD 1926 compared to adult mice. In terms of T cell responses (T-CMI), immunized adult mice showed an increase in the frequency of IFN-γ- and IL-2-producing splenic CD4 T cells, IFN-γ- and TNF-α-producing Peyer’s Patch (PP)-derived CD4 T cells, and IFN-γ- and TNF-α-producing splenic CD8 T cells compared to adult mice administered PBS. In contrast, in aged mice, T-CMI responses were similar in vaccinated versus PBS mice. CVD 1926 elicited significantly more PP-derived multifunctional T cells in adult compared to aged mice.ConclusionThese data suggest that our candidate live attenuated S. Typhimurium vaccine, CVD 1926, may not be sufficiently protective or immunogenic in older humans and that mucosal responses to live-attenuated vaccines decrease with increasing age
Gut-Homing Conventional Plasmablasts and CD27− Plasmablasts Elicited after a Short Time of Exposure to an Oral Live-Attenuated Shigella Vaccine Candidate in Humans
Currently, there is no licensed Shigella vaccine; however, various promising live-attenuated vaccine candidates have emerged, including CVD1208S (ΔguaBA, Δset, Δsen S. flexneri 2a), which was shown to be safe and immunogenic in Phase 1 clinical trials. Here, we report the immune responses elicited in an outpatient Phase 2 clinical trial in which subjects were vaccinated with CVD 1208S. Oral immunization with CVD 1208S elicited high anti-S. flexneri 2a LPS and IpaB antibody responses as well as an acute plasmablast (PB) infiltration in peripheral blood 7 days after immunization. PB sorted based on their expression of homing molecules confirmed that cells expressing integrin α4β7 alone or in combination with CD62L were responsible for antibody production (as measured by ELISpot). Furthermore, using high-color flow-cytometry, on day 7 after immunization, we observed the appearance of conventional PB (CPB, CD19(dim) CD20(−) CD27(+high) CD38(+high) CD3(−)), as well as a PB population that did not express CD27 (CD27(−) PB; pre-plasmablasts). The pattern of individual or simultaneous expression of homing markers (integrin α4β7, CD62L, CXCR3, and CXCR4) suggested that CPB cells homed preferentially to the inflamed gut mucosa. In contrast, ~50% CD27(−) PB cells appear to home to yet to be identified peripheral lymphoid organs or were in a transition state preceding integrin α4β7 upregulation. In sum, these observations demonstrate that strong immune responses, including distinct PB subsets with the potential to home to the gut and other secondary lymphoid organs, can be elicited after a short time of exposure to a shigella oral vaccine
Role of circulating T follicular helper subsets following Ty21a immunization and oral challenge with wild type S. Typhi in humans
Despite decades of intense research, our understanding of the correlates of protection against Salmonella Typhi (S. Typhi) infection and disease remains incomplete. T follicular helper cells (TFH), an important link between cellular and humoral immunity, play an important role in the development and production of high affinity antibodies. While traditional TFH cells reside in germinal centers, circulating TFH (cTFH) (a memory subset of TFH) are present in blood. We used specimens from a typhoid controlled human infection model whereby participants were immunized with Ty21a live attenuated S. Typhi vaccine and then challenged with virulent S. Typhi. Some participants developed typhoid disease (TD) and some did not (NoTD), which allowed us to assess the association of cTFH subsets in the development and prevention of typhoid disease. Of note, the frequencies of cTFH were higher in NoTD than in TD participants, particularly 7 days after challenge. Furthermore, the frequencies of cTFH2 and cTFH17, but not cTFH1 subsets were higher in NoTD than TD participants. However, we observed that ex-vivo expression of activation and homing markers were higher in TD than in NoTD participants, particularly after challenge. Moreover, cTFH subsets produced higher levels of S. Typhi-specific responses (cytokines/chemokines) in both the immunization and challenge phases. Interestingly, unsupervised analysis revealed unique clusters with distinct signatures for each cTFH subset that may play a role in either the development or prevention of typhoid disease. Importantly, we observed associations between frequencies of defined cTFH subsets and anti-S. Typhi antibodies. Taken together, our results suggest that circulating TFH2 and TFH17 subsets might play an important role in the development or prevention of typhoid disease. The contribution of these clusters was found to be distinct in the immunization and/or challenge phases. These results have important implications for vaccines aimed at inducing long-lived protective T cell and antibody responses
Heterogeneity of Multifunctional IL-17A Producing S. Typhi-Specific CD8+ T Cells in Volunteers following Ty21a Typhoid Immunization
Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, continues to cause significant morbidity and mortality world-wide. CD8+ T cells are an important component of the cell mediated immune (CMI) response against S. Typhi. Recently, interleukin (IL)-17A has been shown to contribute to mucosal immunity and protection against intracellular pathogens. To investigate multifunctional IL-17A responses against S. Typhi antigens in T memory subsets, we developed multiparametric flow cytometry methods to detect up to 6 cytokines/chemokines (IL-10, IL-17A, IL-2, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and macrophage inflammatory protein-1β (MIP-1β)) simultaneously. Five volunteers were immunized with a 4 dose regimen of live-attenuated S. Typhi vaccine (Ty21a), peripheral blood mononuclear cells (PBMC) were isolated before and at 11 time points after immunization, and CMI responses were evaluated. Of the 5 immunized volunteers studied, 3 produced detectable CD8+ T cell responses following stimulation with S. Typhi-infected autologous B lymphoblastoid cell lines (B-LCL). Additionally, 2 volunteers had detectable levels of intracellular cytokines in response to stimulation with S. Typhi-infected HLA-E restricted cells. Although the kinetics of the responses differed among volunteers, all of the responses were bi- or tri-phasic and included multifunctional CD8+ T cells. Virtually all of the IL-17A detected was derived from multifunctional CD8+ T cells. The presence of these multifunctional IL-17A+ CD8+ T cells was confirmed using an unsupervised analysis program, flow cytometry clustering without K (FLOCK). This is the first report of IL-17A production in response to S. Typhi in humans, indicating the presence of a Tc17 response which may be important in protection. The presence of IL-17A in multifunctional cells co-producing Tc1 cytokines (IL-2, IFN-γ and TNF-α) may also indicate that the distinction between Tc17 and Tc1 responses in humans is not as clearly delineated as suggested by in vitro experiments and animal models
The two-faced T cell epitope: Examining the host-microbe interface with JanusMatrix
Advances in the field of T cell immunology have contributed to the understanding that cross-reactivity is an intrinsic characteristic of the T cell receptor (TCR), and that each TCR can potentially interact with many different T cell epitopes. To better define the potential for TCR cross-reactivity between epitopes derived from the human genome, the human microbiome, and human pathogens, we developed a new immunoinformatics tool, JanusMatrix, that represents an extension of the validated T cell epitope mapping tool, EpiMatrix. Initial explorations, summarized in this synopsis, have uncovered what appear to be important differences in the TCR cross-reactivity of selected regulatory and effector T cell epitopes with other epitopes in the human genome, human microbiome, and selected human pathogens. In addition to exploring the T cell epitope relationships between human self, commensal and pathogen, JanusMatrix may also be useful to explore some aspects of heterologous immunity and to examine T cell epitope relatedness between pathogens to which humans are exposed (Dengue serotypes, or HCV and Influenza, for example). In Hand-Foot-Mouth disease (HFMD) for example, extensive enterovirus and human microbiome cross-reactivity (and limited cross-reactivity with the human genome) seemingly predicts immunodominance. In contrast, more extensive cross-reactivity with proteins contained in the human genome as compared to the human microbiome was observed for selected Treg epitopes. While it may be impossible to predict all immune response influences, the availability of sequence data from the human genome, the human microbiome, and an array of human pathogens and vaccines has made computationally–driven exploration of the effects of T cell epitope cross-reactivity now possible. This is the first description of JanusMatrix, an algorithm that assesses TCR cross-reactivity that may contribute to a means of predicting the phenotype of T cells responding to selected T cell epitopes. Whether used for explorations of T cell phenotype or for evaluating cross-conservation between related viral strains at the TCR face of viral epitopes, further JanusMatrix studies may contribute to developing safer, more effective vaccines
Salmonella Typhi-specific multifunctional CD8+ T cells play a dominant role in protection from typhoid fever in humans.
BACKGROUND: Typhoid fever, caused by the human-restricted organism Salmonella Typhi (S. Typhi), is a major public health problem worldwide. Development of novel vaccines remains imperative, but is hampered by an incomplete understanding of the immune responses that correlate with protection.
METHODS: Recently, a controlled human infection model was re-established in which volunteers received ~10(3) cfu wild-type S. Typhi (Quailes strain) orally. Twenty-one volunteers were evaluated for their cell-mediated immune (CMI) responses. Ex vivo PBMC isolated before and up to 1Â year after challenge were exposed to three S. Typhi-infected targets, i.e., autologous B lymphoblastoid cell-lines (B-LCL), autologous blasts and HLA-E restricted AEH B-LCL cells. CMI responses were evaluated using 14-color multiparametric flow cytometry to detect simultaneously five intracellular cytokines/chemokines (i.e., IL-17A, IL-2, IFN-g, TNF-a and MIP-1b) and a marker of degranulation/cytotoxic activity (CD107a).
RESULTS: Herein we provide the first evidence that S. Typhi-specific CD8+ responses correlate with clinical outcome in humans challenged with wild-type S. Typhi. Higher multifunctional S. Typhi-specific CD8+ baseline responses were associated with protection against typhoid and delayed disease onset. Moreover, following challenge, development of typhoid fever was accompanied by decreases in circulating S. Typhi-specific CD8+ T effector/memory (TEM) with gut homing potential, suggesting migration to the site(s) of infection. In contrast, protection against disease was associated with low or no changes in circulating S. Typhi-specific TEM.
CONCLUSIONS: These studies provide novel insights into the protective immune responses against typhoid disease that will aid in selection and development of new vaccine candidates
Using a Human Challenge Model of Infection to Measure Vaccine Efficacy: A Randomised, Controlled Trial Comparing the Typhoid Vaccines M01ZH09 with Placebo and Ty21a
Background
Typhoid persists as a major cause of global morbidity. While several licensed vaccines to prevent typhoid are available, they are of only moderate efficacy and unsuitable for use in children less than two years of age. Development of new efficacious vaccines is complicated by the human host-restriction of Salmonella enterica serovar Typhi (S. Typhi) and lack of clear correlates of protection. In this study, we aimed to evaluate the protective efficacy of a single dose of the oral vaccine candidate, M01ZH09, in susceptible volunteers by direct typhoid challenge.
Methods and Findings
We performed a randomised, double-blind, placebo-controlled trial in healthy adult participants at a single centre in Oxford (UK). Participants were allocated to receive one dose of double-blinded M01ZH09 or placebo or 3-doses of open-label Ty21a. Twenty-eight days after vaccination, participants were challenged with 104CFU S. Typhi Quailes strain. The efficacy of M01ZH09 compared with placebo (primary outcome) was assessed as the percentage of participants reaching pre-defined endpoints constituting typhoid diagnosis (fever and/or bacteraemia) during the 14 days after challenge. Ninety-nine participants were randomised to receive M01ZH09 (n = 33), placebo (n = 33) or 3-doses of Ty21a (n = 33). After challenge, typhoid was diagnosed in 18/31 (58.1% [95% CI 39.1 to 75.5]) M01ZH09, 20/30 (66.7% [47.2 to 87.2]) placebo, and 13/30 (43.3% [25.5 to 62.6]) Ty21a vaccine recipients. Vaccine efficacy (VE) for one dose of M01ZH09 was 13% [95% CI -29 to 41] and 35% [-5 to 60] for 3-doses of Ty21a. Retrospective multivariable analyses demonstrated that pre-existing anti-Vi antibody significantly reduced susceptibility to infection after challenge; a 1 log increase in anti-Vi IgG resulting in a 71% decrease in the hazard ratio of typhoid diagnosis ([95% CI 30 to 88%], p = 0.006) during the 14 day challenge period. Limitations to the study included the requirement to limit the challenge period prior to treatment to 2 weeks, the intensity of the study procedures and the high challenge dose used resulting in a stringent model.
Conclusions
Despite successfully demonstrating the use of a human challenge study to directly evaluate vaccine efficacy, a single-dose M01ZH09 failed to demonstrate significant protection after challenge with virulent Salmonella Typhi in this model. Anti-Vi antibody detected prior to vaccination played a major role in outcome after challenge
Interferon-driven alterations of the host’s amino acid metabolism in the pathogenesis of typhoid fever
Enteric fever, caused by Salmonella enterica serovar Typhi, is an important public health problem in resource-limited settings and, despite decades of research, human responses to the infection are poorly understood. In 41 healthy adults experimentally infected with wild-type S. Typhi, we detected significant cytokine responses within 12 h of bacterial ingestion. These early responses did not correlate with subsequent clinical disease outcomes and likely indicate initial host–pathogen interactions in the gut mucosa. In participants developing enteric fever after oral infection, marked transcriptional and cytokine responses during acute disease reflected dominant type I/II interferon signatures, which were significantly associated with bacteremia. Using a murine and macrophage infection model, we validated the pivotal role of this response in the expression of proteins of the host tryptophan metabolism during Salmonella infection. Corresponding alterations in tryptophan catabolites with immunomodulatory properties in serum of participants with typhoid fever confirmed the activity of this pathway, and implicate a central role of host tryptophan metabolism in the pathogenesis of typhoid fever
- …