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Reduced immunogenicity
of a live Salmonella enterica
serovar Typhimurium
vaccine in aged mice

Jessica C. Allen1,2, Franklin R. Toapanta1,2, Scott M. Baliban1,2,
Marcelo B. Sztein1,2,3 and Sharon M. Tennant1,2*

1Center for Vaccine Development and Global Health, University of Maryland School of Medicine,
Baltimore, MD, United States, 2Department of Medicine, University of Maryland School of Medicine,
Baltimore, MD, United States, 3Department of Pediatrics, University of Maryland School of
Medicine, Baltimore, MD, United States
Introduction:Non-typhoidal Salmonella (NTS) is responsible for a high burden of

foodborne infections and deaths worldwide. In the United States, NTS infections

are the leading cause of hospitalizations and deaths due to foodborne illnesses,

and older adults (≥65 years) are disproportionately affected by Salmonella

infections. Due to this public health concern, we have developed a live

attenuated vaccine, CVD 1926 (I77 DguaBA DclpP DpipA DhtrA), against

Salmonella enterica serovar Typhimurium, a common serovar of NTS. Little is

known about the effect of age on oral vaccine responses, and due to the decline

in immune function with age, it is critical to evaluate vaccine candidates in older

age groups during early product development.

Methods: In this study, adult (six-to-eight-week-old) and aged (18-month-old)

C57BL/6 mice received two doses of CVD 1926 (109 CFU/dose) or PBS perorally,

and animals were evaluated for antibody and cell-mediated immune responses.

A separate set of mice were immunized and then pre-treated with streptomycin

and challenged orally with 108 CFU of wild-type S. Typhimurium SL1344 at 4

weeks postimmunization.

Results: Compared to PBS-immunized mice, adult mice immunized with CVD

1926 had significantly lower S. Typhimurium counts in the spleen, liver, and small

intestine upon challenge. In contrast, there were no differences in bacterial loads

in the tissues of vaccinated versus PBS aged mice. Aged mice exhibited reduced

Salmonella-specific antibody titers in the serum and feces following

immunization with CVD 1926 compared to adult mice. In terms of T cell

responses (T-CMI), immunized adult mice showed an increase in the

frequency of IFN-g- and IL-2-producing splenic CD4 T cells, IFN-g- and TNF-

a-producing Peyer’s Patch (PP)-derived CD4 T cells, and IFN-g- and TNF-a-
producing splenic CD8 T cells compared to adult mice administered PBS. In

contrast, in aged mice, T-CMI responses were similar in vaccinated versus PBS

mice. CVD 1926 elicited significantly more PP-derived multifunctional T cells in

adult compared to aged mice.

Conclusion: These data suggest that our candidate live attenuated S.

Typhimurium vaccine, CVD 1926, may not be sufficiently protective or
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immunogenic in older humans and that mucosal responses to live-attenuated

vaccines decrease with increasing age.
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Introduction

Non-typhoidal Salmonella (NTS) is a major cause of morbidity

and mortality worldwide. The global burden of NTS disease is

estimated to be 93 million diarrheal cases and 150,000 deaths each

year (1). Specifically in the United States, NTS is the leading cause of

hospitalizations and deaths due to foodborne infections (2). During

2021, the Foodborne Diseases Active Surveillance Network

(FoodNet) reported 7,148 Salmonella laboratory-diagnosed

infections, 1,974 hospitalizations and 52 deaths among 10 U.S.

states (2). Alarmingly, 5,620 of the global deaths caused by infection

with Salmonella spp. in 2019 were attributable to antimicrobial

resistant (AMR) strains; AMR infections are associated with worse

clinical outcomes (3, 4). The Centers for Disease Control and

Prevention lists NTS as a serious antibiotic resistant threat that

requires prompt and sustained action (5).

Most people generally experience self-limiting NTS

gastroenteritis lasting 5-7 days. However, those who are

malnourished, HIV-positive, infants, or older (≥65 years) are at

increased risk for invasive infections that can result in bacteremia,

meningitis, and/or death (6, 7). In the United States, rates of severe

illness and hospitalization due to NTS have been demonstrated to

be highest in individuals ≥65 years of age and increase with age (8–

10). Individuals ≥65 years have a ten-fold higher case fatality rate

than those aged 5-64 years (3.0% versus 0.3%) (10, 11). Older adults

with gastrointestinal illness are more likely to experience

extraintestinal manifestations such as septicemia, meningitis,

acute renal failure, hemolytic uremic syndrome and arrhythmias,

thereby resulting in further health complications for these

individuals (10, 12). This poses major risks for long-term care

facilities where many older individuals share living spaces and are

prone to transmitting NTS to one another (12, 13).

NTS vaccines could be used to protect older adults but currently

there are no licensed NTS vaccines available. We have developed a

live attenuated S. Typhimurium vaccine candidate, CVD 1926 (I77

DguaBA DclpP DpipA DhtrA), against Salmonella enterica serovar

Typhimurium (14, 15), one of the most common serotypes of NTS

worldwide (16–18). The guaBA deletion is the primary attenuating

mutation which produces an auxotrophic S. Typhimurium strain

that requires guanine for growth (19). The clpP mutation further

attenuates the bacteria and produces hyperflagellation. Deletion of

pipA and htrA augments vaccine tolerability (15). In our previous
02
work, we have used non-human primate and murine models to

evaluate CVD 1926 (14, 15). We showed that CVD 1926 was able to

protect rhesus macaques against moderate-to-severe diarrhea with a

vaccine efficacy of 80%; vaccinated animals experienced diarrhea for

fewer days and had significantly lower organ burden levels

compared to unvaccinated animals following challenge with wild-

type S. Typhimurium (15). In mice, CVD 1926 was well-tolerated

and immunogenic (100% seroconversion of anti-lipopolysaccharide

[LPS] serum IgG) in young adult BALB/c mice and protected them

against lethal challenge with wild-type (WT) S. Typhimurium at 1

and 3 months postimmunization (14). These results indicate that

CVD 1926 is a promising vaccine candidate in adult animals.

However, this and other live NTS vaccines have not yet been

evaluated in aged animal models.

Although vaccination is the most effective intervention in

preventing infections, older adults experience reduced vaccine

efficacy and/or immunogenicity (e.g., to vaccines targeting SARS-

CoV-2, influenza virus, Streptococcus pneumoniae, and herpes

zoster [shingles]) (20–27) due to a decline and/or dysregulation

in immunity with age, termed immunosenescence. However, our

current understanding of vaccine responses in older age groups is

primarily derived from studies using parenteral vaccines, and little

is known about peroral vaccine responses in older adults. To our

knowledge, only two oral live attenuated vaccines have been

administered to the elderly; a typhoid vaccine (Ty21a) and a

pentavalent rotavirus vaccine (RotaTeq®) (28, 29). After Ty21a

immunization, the terminal ileum resident T cells of elderly

volunteers showed reduced IL-17A and IL-2 production,

compared to younger adults; indicating that specific mucosal

immune responses were weaker in older volunteers compared to

adults. As for RotaTeq®, this vaccine was safe and well tolerated in

older adults. After one dose, serum neutralizing antibodies against

rotavirus were elevated in aged volunteers. However, a younger

adult comparator was not included in this study; thus, the effect of

age on RotaTeq® vaccine responses remain unknown. In mice,

Fujihashi et al. reported that mucosal immunosenescence to soluble

protein antigens can occur as early as 1 year of age; 12- to 14-

month-old mice failed to generate fecal IgA responses to oral

immunization with ovalbumin adjuvanted with cholera toxin (30,

31). This was associated with fewer antibody-forming cells in the

gut-associated lymphoid tissue, compared to adult mice (30, 32).

Therefore, there is some evidence that mucosal immunosenescence
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progresses with age, but it is unknown whether vaccination with live

oral NTS vaccines will be less protective and immunogenic in

older individuals.

The goal of the current study was to evaluate the

immunogenicity of a live attenuated S. Typhimurium oral vaccine

candidate, CVD 1926, in the context of immunosenescence by

measuring mucosal and systemic vaccine responses in 18-month-

old and 6- to 8-week-old mice. To this end, we assessed the

following parameters: (i) protection of vaccinated mice against

extraintestinal infection with S. Typhimurium, (ii) humoral

immunity by measuring antigen-specific serum IgG and fecal IgA

levels, and (iii) T cell mediated immunity (T-CMI) by measuring

IFN-g, TNF-a, and IL-2 production and/or CD107a expression in

mucosal and splenic CD4 and CD8 T cells. These findings will

expand our knowledge of age-associated deficits in generating local

and systemic immunity to live S. Typhimurium vaccines and shed

light on oral vaccine responses within older hosts.
Materials and methods

Animals and ethics statement

All animal studies were performed in facilities that are

accredited by the Association for Assessment and Accreditation

of Laboratory Animal Care. Mice were housed under specific

pathogen–free conditions at the University of Maryland School of

Medicine, and all the procedures were approved by the University

of Maryland School of Medicine Institutional Animal Care and Use

Committee (protocol no. 0619004). C57BL/6 mice (both sexes)

were used to examine T-CMI, antibody responses and to assess

protection against bacterial burden using a streptomycin mouse

model. Six- to 8-week-old (adult) C57BL/6 mice were purchased

from The Jackson Laboratory (Bar Harbor, ME). Eighteen-month-

old (aged) C57BL/6 mice were acquired from the National Institute

on Aging aged rodent colony or purchased from The Jackson

Laboratory. BALB/c mice (female only) were used to examine

antibody responses and to determine protection against lethal

challenge. Six- to 8-week-old BALB/c mice were purchased from

Charles River Laboratories (Wilmington, MA). For 18-month-old

BALB/c mice, 6- to 8-week-old mice were purchased from Charles

River Laboratories and housed at the University of Maryland School

of Medicine until 18 months of age.
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Bacterial strains, medium, and
culture conditions

Bacterial strains used in this study are shown in Table 1. All

bacterial strains were maintained in animal-product-free Hy-Soy

(HS) medium (10 g/L Soytone [Teknova, Hollister, CA], 5 g/L Hy-

yest [Kerry Bio-Science, Beloit, WI] and 5 g/L sodium chloride

[American Bio, Natick, MA]) at 37°C. When needed, agar (Sigma–

Aldrich, St. Louis, MO) was added at 15 g/L. For CVD 1926,

medium was supplemented with guanine (0.005% weight/volume

[w/v] final concentration; Sigma–Aldrich). For S. Typhimurium

SL1344, medium was supplemented with 50 mg/mL streptomycin

sulfate (Research Products International, Mt. Prospect, IL).
Immunization and challenge

Salmonella strains were streaked onto HS agar (+ 0.005% guanine

for CVD 1926) and incubated at 37°C for 18-20 h. Bacteria were then

resuspended in sterile PBS and washed twice by centrifugation at 4°C.

Bacteria were concentrated by centrifugation or diluted with sterile

PBS to achieve the correct dosage. Adult and aged C57BL/6 mice

were immunized by peroral gavage with either 109 colony forming

units (CFU) of CVD 1926 suspended in 100 mL PBS or 100 mL PBS

alone on days 0 and 28. Adult and aged BALB/c mice received either

109 CFU of CVD 1926 suspended in 100 mL PBS or 100 mL PBS by

oral gavage on days 0, 21, and 42. Immunized mice were monitored

for adverse effects following immunization including lethargy,

difficulty breathing, inability to ambulate, and weight loss. Blood

was collected one day prior to each immunization or challenge to

determine serum antibody titers. Fecal pellets were collected at day -1

and day 55 (for C57BL/6 mice) or 69 (for BALB/c mice) to determine

fecal antibody titers.

Immunized C57BL/6 mice were challenged using the

streptomycin mouse model (33, 37). Briefly, 4 weeks after the last

immunization, mice were fasted for 4 hours before being

administered 20 mg streptomycin suspended in 100 µL sterile

water by peroral gavage. Food and water were returned

immediately. Twenty hours later, food and water were removed

for 4 hours, and then mice were infected by peroral gavage with 108

CFU/100 µL of the streptomycin-resistant strain S. Typhimurium

SL1344 suspended in PBS. On day 3 post-infection, mice were

euthanized, and the spleen, liver, and gastrointestinal tract were
TABLE 1 S. Typhimurium strains used in this study.

Strain Characteristics and purpose Reference

SL1344 Streptomycin-resistant, ST19; used to challenge C57BL/6 mice using the streptomycin mouse model (33, 34)

I77
Clinical blood isolate from Mali, antibiotic sensitive, ST19; used to prepare lysate for cell stimulation and to challenge BALB/c

mice to determine protection against lethal challenge
(35)

CVD 1926 S. Typhimurium I77 DguaBA DclpP DpipA DhtrA vaccine strain; used to immunize C57BL/6 and BALB/c mice (14)

CVD 1925 Reagent strain for FliC isolation (19)

CVD 1925
(pSEC10-wzzB)

Reagent strain for COPS isolation (36)
f
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harvested, homogenized, and diluted to a concentration of 100 mg

tissue/mL PBS. Bacterial counts were determined by spread plating

on HS agar containing 50 mg/mL streptomycin. Data are presented

as CFU/organ which represents the total S. Typhimurium SL1344

recovered from the whole organ.

Immunized BALB/c mice were challenged with a lethal dose of

wild-type S. Typhimurium I77 to determine vaccine efficacy. Briefly,

immunized mice were challenged perorally with 100 x LD50 (3 x 10
6

CFU/100 µL) wild-type S. Typhimurium I77 four weeks post-

immunization (day 70). Mice were monitored for up to 30 days

for weight loss and signs of illness and euthanized if they met

alternative endpoint criteria (e.g., lost ≥20% of their starting body

weight) and scored as having succumbed to infection.
Sample collection and assessment of
antibody responses

Venous blood was collected and serum separated using serum

gel tubes (Sarstedt, Numbrecht, Germany). Serum was isolated after

centrifugation at 10,000 x g for 5 min. Fecal pellets were weighed

and suspended in ice-cold PBS containing 0.01% sodium azide and

1% protease inhibitor cocktail at a concentration of 100 mg stool/

mL (MilliporeSigma, St. Louis, MO). Debris were removed by

centrifugation at 15,000 x g for 10 min at 4°C, and the fecal

supernatants were collected. All samples were stored at -80°C

until analysis.

Vaccine-induced antibody responses were measured by enzyme-

linked immunosorbent assay (ELISA). Briefly, 96-well medium

binding plates (Greiner Bio-One, Monroe, NC) were coated with

either S. Typhimurium core-and O-polysaccharide (COPS) or FliC

antigens (19, 36) in PBS at a concentration of 5 mg/mL and incubated

overnight at 4°C. Plates were washed with PBS-T (PBS containing

0.05% Tween 20) and blocked with PBS + 10%Omniblok non-fat, dry

milk for 2 h at 37°C. Samples were serially diluted in PBS-T + 10%

Omniblok, transferred to blocked ELISA plates, and incubated for 1 h

at 37°C. Plates were washed and incubated for 1 h at 37°C with

horseradish peroxidase (HRP)-labeled anti-mouse IgG (KPL,

Gaithersburg, MD) or HRP-labeled anti-mouse IgA (KPL). After

washing, substrate (3,3’,5,5’-tetramethylbenzidine; KPL) was added,

and the plates were incubated for 10 min in darkness. The reaction

was stopped with the addition of 1 M H3PO4, and the absorbance at

450 nm was recorded using a VersaMax microplate reader (Molecular

Devices, San Jose, CA). ELISA titers were calculated by interpolation

of absorbance values on a standard curve. The endpoint titers reported

as ELISA units (EU)/mL represent the inverse of the serum dilution

that produced an absorbance value of 0.2 above the blank.

Seroconversion in vaccinated mice was defined as a 4-fold increase

in the antibody titer compared to the pre-immunization titer.
Isolation of mononuclear cells from the
spleen and gut

Single cell suspensions of the spleen and Peyer’s Patches were

made by mechanical dissociation of organs through 70-µm-pore
Frontiers in Immunology 04
size nylon filters. Red blood cells in the spleen were lysed with

Ammonium-Chloride-Potassium (ACK) lysis buffer (Gibco, Grand

Island, NY). Cells were washed with PBS and then resuspended in

complete RPMI 1640 medium (Gibco) supplemented with 10% fetal

bovine serum (FBS; Gemini Bioproducts, West Sacramento, CA), 2

mM L-glutamine (Gibco), 1X non-essential amino acids (Gibco), 10

mM HEPES (Gibco), 2.5 mM Sodium pyruvate (Gibco), 100 U/mL

penicillin (Sigma-Aldrich), 100 µg/mL streptomycin (Sigma-

Aldrich), and 50 mg/mL gentamicin (Gibco).
Preparation of S. Typhimurium lysate

S. Typhimurium I77 was grown on HS agar for 18-20 h at 37°C.

Bacteria were harvested, washed in sterile PBS at 4°C and heat-

inactivated at 65°C for 30 minutes. Suspensions were then sonicated

using Fisherbrand™ Model 120 Sonic Dismembrator (Fisher

Scientific, Waltham, MA) for 10 short bursts of 10 seconds at 20

Khz frequency. After sonication, suspensions were centrifuged at

2800 x g for 15 minutes and the supernatant was collected for

protein quantification. To determine the protein concentration of

the lysate, the Pierce™ BCA Protein Assay Kit was used

(ThermoFisher, Waltham, MA).
Ex-vivo stimulation and flow
cytometry staining

One million cells from the spleen or Peyer’s Patches were

stimulated with either (i) media, (ii) phorbol 12-myristate 13-acetate

(PMA; 20 ng/µL) and ionomycin (1 µg/mL), or (iii) S. Typhimurium

I77 cell lysate (5 mg/mL) for 16-18 h in round-bottom tubes (Corning,

Kennebunk, ME). Cells were then incubated for 4 h in the presence of

anti-CD107a-BV510™ (clone 1D4B; Biolegend, San Diego, CA) before

overnight incubation with protein transport blockers monensin (1mg/
mL; Sigma) and brefeldin A (2 mg/mL; Biolegend). The next day, cells

were transferred to V-shaped 96-well plates (Corning) and stained for

flow cytometry. Briefly, 1 x 106 cells were added to a well, washed with

PBS, and stained for viability using LIVE/DEAD™ Fixable Yellow

stain (Invitrogen, Thermo Fisher Scientific). For cell-surface staining,

cells were blocked with anti-mouse CD16/32 (clone 93, Biolegend) for

10 minutes and stained extracellularly with an antibody cocktail (Table

S1) for 30 minutes on ice. Pacific Orange-Streptavidin (Invitrogen) was

added for 30 minutes on ice as a secondary staining step. Cells were

then permeablized and fixed using the eBioscience™ Intracellular

Fixation & Permeablization Buffer Set (Invitrogen) according to the

manufacturer’s instructions. An antibody cocktail against intracellular

targets (Table S1) was added to cells for 30 minutes at room

temperature. Cells were then washed with FACS buffer and fixed

with 2% paraformaldehyde (PFA) in PBS. Samples were acquired using

a Cytek® Aurora spectral flow cytometer and analyzed using

SpectroFlo® Software (Cytek® Biosciences, Fremont, CA). T cell

responses against S. Typhimurium I77 were expressed as a net

percentage of cytokine or CD107a positive cells (i.e., percentage of S.

Typhimurium-stimulated cells minus percentage of cells cultured with

media only). For each cytokine and CD107a, a cutoff to determine “true
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responders” was included, as described (15). The cutoff point was the

highest value for the cytokine/CD107a identified in the PBS group

post-vaccination. Any sample with a net percentage higher than the

cutoff was considered a true responder.
Statistical analysis

Data were analyzed using GraphPad Prism 7 Software (La Jolla,

CA, USA). A p-value equal to or below 0.05 was considered

significant for each test. For ELISA and T cell analyses, statistical

comparisons were accomplished using a Mann-Whitney U test

(two-tailed, a = 0.05). For assessing vaccine efficacy, seroconversion

and cytokine responders, Fisher’s exact test was used. Correlations

between bacterial organ burden and a-COPS IgG titers were

calculated using a Spearman correlation test (two-tailed, a =

0.05). Survival curves of challenged mice were compared by the

log-rank test. Vaccine efficacy (VE) was calculated based on the

attack rate (AR) in control and vaccinated mice as follows: VE =

(ARcontrols - ARvaccinated)/ARcontrols) × 100.
Results

CVD 1926 elicits poor protection against
challenge with S. Typhimurium in aged
versus adult C57BL/6 mice

We found that CVD 1926 was safe, and no adverse effects were

observed following immunization of 6- to 8-week-old (adult) or 18-

month-old (aged) C57BL/6 mice (n=10). We subsequently used the

streptomycin challenge model to evaluate protection against

colonization with S. Typhimurium (33, 37). At day 3 after

challenge, the spleen, liver, and small intestine of CVD 1926-

immunized adult mice contained significantly less S .

Typhimurium, ~3 log10 CFU lower, compared to the bacterial

load of PBS mice (Figure 1). In contrast, CVD 1926 failed to

confer protection in aged mice, as there were no significant
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differences in S. Typhimurium levels within the spleen, liver, and

small intestine between vaccinated and unvaccinated animals

(Figure 1). Further, for CVD 1926-immunized animals, the adult

mice showed significantly lower organ burden in the spleen, liver,

and small intestine compared to aged mice (spleen: p = 0.003; liver:

p = 0.02; small intestine p = 0.0004). To determine if this phenotype

is consistent in a different mouse strain and using a lethal infection

model, we assessed vaccine efficacy in BALB/c mice. Three

immunizations were used here to compare results to previous

findings using this model (14). We observed a vaccine efficacy of

64% (p = 0.0007) against lethal challenge in adult BALB/c mice, but

only 33% vaccine efficacy (p = 0.093) in aged BALB/c mice (Table

S2). However, by log-rank test, there was a significant difference in

survival curves between CVD 1926- and PBS-immunized animals

for both the adult and aged mice (Figure S1).
Aged C57BL/6 mice fail to produce robust
antibody responses following
immunization with CVD 1926

CVD 1926 elicited robust anti-COPS and anti-FliC serum IgG

antibody titers in adult compared with aged C57BL/6 mice (anti-

COPS: p = 0.0009; anti-FliC: p = 0.0003) (Figures 2A, B). Anti-

COPS and anti-FliC serum titers in CVD 1926-immunized adult

mice were significantly higher than unvaccinated mice at day 55

(anti-COPS: p < 0.0001; anti-FliC: p = 0.0001). Although aged mice

vaccinated with CVD 1926 elicited significantly higher anti-COPS

serum IgG titers compared to unvaccinated mice (p = 0.011), there

was no difference in anti-FliC serum IgG titers (Figures 2A, B). The

majority of vaccinated adult mice seroconverted to serum anti-

COPS IgG (100%) and anti-FliC serum IgG (90%); however,

seroconversion in the aged cohort was significantly diminished in

comparison, with 56% of mice seroconverting for anti-COPS (p =

0.033) and 11% (p = 0.001) for anti-FliC serum IgG titers (Table 2).

One day prior to challenge, fecal samples from adult mice contained

significantly higher anti-COPS IgA levels compared to aged mice (p
B CA

FIGURE 1

Bacterial burden of adult and aged C57BL/6 mice after challenge with wild-type S. Typhimurium. Bacterial burden in the (A) spleen, (B) liver, and
(C) small intestine of adult and aged mice (n=5 of each sex) immunized with either PBS or CVD 1926, and then subsequently challenged perorally
with 108 CFU of S. Typhimurium SL1344. Twenty-four hours prior to challenge, mice were pretreated with peroral streptomycin. Median represented
by bar (ns, not significant; *p ≤ 0.05; **p ≤ 0.01 ***p ≤ 0.001; ****p ≤ 0.0001 by Mann-Whitney).
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= 0.003) although there was no significant difference between

groups in terms of seroconversion (Figure 2C and Table 2).

Both adult and aged BALB/c mice showed a dose-response

increase in anti-COPS serum IgG levels post-vaccination, in

comparison to PBS-immunized mice (Figures S2A, C). Although

both adult and aged vaccinated mice produced high fecal IgA titers

by day 69, adult mice produced significantly higher anti-COPS IgA

levels than aged mice with a geometric mean titer (GMT) of 1,122.33

and 180.34, respectively (p < 0.0001) (Figures S2B, D). We investigated

the relationship between anti-COPS antibody levels and S.

Typhimurium organ burden following challenge in adult and aged

C57BL/6mice. Anti-COPS serum IgG levels and S. TyphimuriumCFU

from the spleens of adult and aged mice were negatively correlated (r =

-0.519, p = 0.027) (Figure S3A). For the liver and small intestine, there

was a moderate negative association between anti-COPS serum IgG

levels and organ burden but the p-values were not significant (liver: r =

-0.455, p = 0.058; small intestine: r = -0.450, p = 0.061) (Figures S3B, C).

Anti-COPS fecal IgA levels and CFU counts in the spleen (r = -0.479,

p = 0.045) and liver (r = -0.584, p = 0.011) were negatively correlated as

well (Figures S4A, B). Likewise, there was a negative but non-significant

association between the fecal IgA titers and bacteria present within the

small intestine (r = -0.461, p = 0.054) (Figure S4C).
Reduced T-CMI responses in aged C57BL/
6 mice receiving CVD 1926 compared to
C57BL/6 adult mice

For evaluation of systemic and mucosal T-CMI to CVD 1926 in

C57BL/6 mice, splenic and Peyer’s Patch (PP)-derived cells were
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stimulated ex-vivo with wild-type S. Typhimurium lysate 10 days

following the second immunization, and cytokine production (IFN-g,
TNF-a, IL-2) and CD107a upregulation (a T cell degranulation

marker) by CD4 and CD8 T cells were assessed by intracellular flow

cytometry (Figure S5). There were no differences in the frequencies of

CD4 and CD8 T cells within the spleen and PPs of adult and aged mice

(Figure S6). However, within the CD4 and CD8 T cell compartments,

naïve agedmice had significantly more T cells expressing CD44 (Figure

S7). S. Typhimurium-specific T-CMI was recorded in the spleens of

adult mice as shown by higher levels of IFN-g+ and IL-2+ CD4 T cells

in the spleens of immunized adult mice compared to PBS-immunized

mice (Figure 3A). Likewise, frequencies of antigen-specific IFN-g+ and

TNF-a+ PP-derived CD4 T cells were significantly higher in CVD

1926-immunized mice compared to unvaccinated mice (Figure 3C).

Importantly, CVD 1926 did not elicit S. Typhimurium-specific T-CMI

in aged mice, as there were no differences in CD4 T cell cytokine

production between vaccinated and unvaccinated aged mice in the

spleen or PP (Figures 3B, D respectively). Splenic CD8 T cells were also

evaluated, but there were too few CD8 T cells in the PP to evaluate

statistical differences between individual mice. In the CD8

compartment, CVD 1926-immunized adult mice demonstrated

higher frequencies of TNF-a+ CD8 T spleen cells compared to non-

immunized animals (Figure 4A). CVD 1926 did not elicit strong CD8

T-CMI in aged mice (Figure 4B). The proportion of CD4 and CD8 T

cell responders is shown in Table 3.

T cells capable of upregulating at least two cytokines/CD107a

expression (termed multifunctional [MF]) were assessed in a subset of

mice in response to S. Typhimurium stimulation. Amongst adult

vaccine recipients, 44% demonstrated MF responses in splenic CD4

T cells, 66% in PP-derived CD4 T cells, and 33% in splenic CD8 T cells
TABLE 2 Proportion of mice that show seroconversion following immunization with PBS or CVD 1926.

No. of mice that seroconverted/No. of mice tested (%)

Immunization a-COPS IgG a-FliC IgG a-COPS IgA

Adult
PBS 0/10 (0%) 0/10 (0%) 0/10 (0%)

CVD 1926 10/10 (100%)* 9/10 (90%)*** 10/10 (100%)

Aged
PBS 0/9 (0%) (0/9) (0%) 0/9 (0%)

CVD 1926 5/9 (56%) 1/9 (11%) 6/9 (67%)
*, immunization with CVD 1926, adult versus aged; p ≤ 0.05 by Fisher’s exact test.
***, immunization with CVD 1926, adult versus aged; p ≤ 0.001 by Fisher’s exact test.
B CA

FIGURE 2

Serum IgG and fecal IgA responses from adult and aged C57BL/6 mice immunized with CVD 1926. (A) Anti-COPS and (B) anti-FliC serum IgG
responses and (C) anti-COPS fecal IgA responses after 2 doses of PBS or CVD 1926 (day 55). Geometric mean titer represented by bar (ns, not
significant; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001 by Mann-Whitney).
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(Table 4). In contrast, single functionality (or no functionality)

predominated in aged mice; 11% of splenic CD4 T cell responders,

0% of PP-derived CD4 T cell responders, and 22% of splenic CD8 T

cell responders were MF. The number of CVD 1926-immunized

animals demonstrating multifunctionality in the PP was significantly

greater for adult mice than aged mice (p = 0.009) (Table 4). For MF

splenic CD4 T cells from adult mice, IL-2 production was detected

from all animals displaying multifunctionality (Figure 5A). No

dominant cytokine expression profile was observed in PP-derived

MF CD4 T cells since MF cells producing different combinations of

IFN-g, TNF-a and/or IL-2 were all detected (Figure 5B). For

multifunctionality in the CD8 T cell compartment, 3/9 (33%) adult

mice and 2/9 (22%) aged mice demonstrated detectable MF CD8 T

cells (Table 4). TNF-a production (with IFN-g, IL-2 and/or CD107)

was dominant inMFCD8 T cells from adult mice, whilst IFN-g and IL-
2 production was consistent among MF CD8 T cells from aged

mice (Figure 5C).
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Discussion

Development of an effective NTS vaccine for high-risk target

groups, including the elderly, remains a public health priority. In this

study, we explored the impact of age-related immunosenescence on

the protective ability of CVD 1926, a live-attenuated vaccine

candidate for S. Typhimurium. We demonstrated that aged mice

immunized with CVD 1926 failed to reduce bacterial burden upon

challenge with wild-type S. Typhimurium, which was associated with

lower vaccine-induced antibody titers and weaker T cell responses.

Our data suggest that CVD 1926 is poorly immunogenic and less

efficacious in this age group.

Aged mice immunized with CVD 1926 were unable to lower the

bacterial load upon challenge which is consistent with other studies

showing that aged mice failed to clear influenza, SARS-CoV-2 or

Streptococcus pneumoniae infection after immunization (38–40).

Moreover, we showed that aged mice produced poor antigen-
B

C D

A

FIGURE 3

Evaluation of CD4 T cell responses elicited by CVD 1926 in C57BL/6 mice. Fourteen days following the second immunization with CVD 1926,
cytokine production from CD4 T cells were assessed in the spleens (A, B) and Peyer’s Patches (PP; C, D) of adult (A, C) and aged (B, D) mice.
Changes in these markers were assessed upon ex-vivo stimulation with S. Typhimurium lysate. Each point represents data from one mouse. Median
represented by bar (ns, not significant; *p ≤ 0.05; **p ≤ 0.01; ****p ≤ 0.0001 by Mann-Whitney).
BA

FIGURE 4

Evaluation of CD8 T cell responses elicited by CVD 1926 in C57BL/6 mice. Fourteen days following the second immunization with CVD 1926,
cytokine production and CD107a upregulation from CD8 T cells were assessed in the spleens of (A) adult and (B) aged mice. Changes in these
markers were assessed upon ex-vivo stimulation with S. Typhimurium lysate. Each point represents data from one mouse. Median represented by
bar (ns, not significant; ***p ≤ 0.001 by Mann-Whitney).
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specific antibody and T cell responses following vaccination, which

are both involved in protective immunity to NTS infection in

susceptible mouse strains (41); hence, consistent with the inability

to control the bacterial burden.

Decreased antigen-specific antibody levels have been implicated

in weak vaccine responses in older individuals (27, 42). In line with

these observations, we found that aged mice produced significantly

lower anti-COPS and anti-FliC serum IgG responses compared to

adult mice. Notably, CVD 1926 did not elicit an anti-FliC IgG

response altogether in aged mice, as evidenced by comparable titers

between CVD 1926- and PBS-immunized mice. Antibodies directed

at the O-antigen of LPS and flagellin protein of Salmonella play a

critical role in mediating protection in mice and humans by

promoting phagocytic uptake and/or lysing bacteria directly via

complement fixation (43–46). Since prevention of bacterial

dissemination relies on robust preexisting antibody responses, the

inability of CVD 1926-immunzed aged mice to clear bacteria upon

infection may be explained by modest levels of anti-COPS and anti-

FliC serum IgG. Indeed, we observed a significant relationship

between S. Typhimurium CFUs in the spleen and anti-COPS serum
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IgG levels, which is consistent with reports from sub-Saharan Africa

where Salmonella-specific antibody titers were shown to be

associated with decreased disease in humans (47, 48).

Aged C57BL/6 mice produced lower levels of anti-COPS fecal

IgA with only 67% of mice seroconverting, as compared to 100% of

adult mice. Similarly, fecal IgA levels from aged BALB/c mice were

lower compared to adult mice post-immunization. Secretory IgA

(SIgA) is proposed to entrap antigens and pathogens within the

intestinal lumen, which restricts colonization of the gut mucosa, as

well as invasion to extraintestinal tissues (49). Despite comparable

anti-COPS serum IgG titers between adult and aged BALB/c mice

post-immunization, aged BALB/c mice achieved a vaccine efficacy

of only 33% (versus 64% in adult mice), suggesting a role for

mucosal IgA in protection against lethality. Richards et al.

demonstrated that a human SIgA monoclonal antibody against S.

Typhimurium LPS, Sal4, limited S. Typhimurium invasion of

Peyer’s Patches in BALB/c mice (50). Lastly, in humans, the

quantity and avidity of IgA specific for S . Typhi Vi

polysaccharide was correlated with protection against typhoid

fever, thereby highlighting the importance of IgA mediated
B CA

FIGURE 5

Cytokine profiles of multifunctional (MF) CD4 and CD8 T cells elicited by CVD 1926 in C57BL/6 mice. Induction of MF CD4 and CD8 T cells
following immunization with CVD 1926 in vaccine responders. Fourteen days following the second immunization with CVD 1926, the ability of CD4
T cells in the (A) spleens and (B) Peyer’s Patches as well as (C) CD8 T cells in the spleen to produce more than one cytokine and/or CD107a
expression was assessed. Only data from animals demonstrating multifunctionality are shown.
TABLE 3 Proportion of mice that show T cell responses to CVD 1926 immunization.

No. of mice that show T cell responses/No. of mice tested (%)

Splenic CD4 T cells PP-derived CD4 T cells Splenic CD8 T cells

IFN-g TNF-a IL-2 IFN-g TNF-a IL-2 IFN-g TNF-a IL-2 CD107a

Adult 10/19 (53%)* 7/19 (37%) 7/9 (78%) 14/19 (74%)* 15/19 (79%)* 4/10 (40%) 8/19 (42%) 11/19 (58%) 1/10 (10%) 3/10 (30%)

Aged 2/19 (11%) 4/19 (21%) 2/9 (22%) 3/19 (16%) 4/19 (21%) 0/10 (0%) 5/19 (26%) 8/19 (42%) 2/10 (20%) 0/10 (0%)
fro
*, adult versus aged; p ≤ 0.05 by Fisher’s exact test.
TABLE 4 Proportion of mice that show multifunctional (MF) T cell responses to CVD 1926 immunization.

No. of mice that show MF T cell responses/No. of mice tested (%)

Splenic CD4 T cells PP-derived CD4 T cells Splenic CD8 T cells

Adult 4/9 (44%) 6/9 (66%)* 3/9 (33%)

Aged 1/9 (11%) 0/9 (0%) 2/9 (22%)
*, adult versus aged; p ≤ 0.05 by Fisher’s exact test.
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immunity (51, 52). With these studies and our finding that IgA

titers in the stool negatively correlate with S. Typhimurium burden

in the spleen and liver, we postulate that, in addition to serum IgG,

antigen-specific IgA in the intestinal lumen assists in preventing

bacterial dissemination to deep tissues upon oral infection. In line

with this hypothesis, the age-associated decrease in fecal IgA titers

likely contributes to the high bacterial burden in aged C57BL/6 mice

after challenge.

CVD 1926 elicited fewer T cells capable of producing pro-

inflammatory cytokines in aged mice compared to young animals.

The number of T cell responders, the magnitude of cytokine

production, and number of animals with MF T cells was weak in

aged mice, suggesting that, collectively, CVD 1926 failed to elicit a

robust T-CMI in aged mice. This is consistent with data from older

adult humans that received influenza and SARS-CoV-2 mRNA

vaccines and may explain the decreased protection in older animals

(53). Compared to PBS-treated adult mice, CVD 1926-immunized

animals showed an increase in the frequency of splenic IFN-g and
IL-2 producing CD4 T cells and IFN-g and TNF-a producing PP-

derived CD4 T cells following in vitro stimulation with S.

Typhimurium lysate. Since cytokine production upon re-

stimulation is a known property of effector T cells and Salmonella

clearance requires a robust Th1 response, we postulate that the T

cells of vaccinated adult mice secrete pro-inflammatory cytokines to

promote bacterial killing by immune inflammatory cells in the gut,

limiting extra-intestinal spread during infection (54–57). This is

supported by a study showing that convalescent typhoid fever

patients produced higher levels of IFN-g, TNF-a and MIP-1b
(58). Moreover, extensive studies using specimens from

participants exposed to wild-type S. Typhi showed striking

associations in the specific production of IFN-g, TNF-a, IL-2, and
other cytokines, as well as the expression of CD107, and protection

from disease (59–61). MF T cells are an indicator of efficient effector

responses and there is evidence that secretion of multiple cytokines

synergistically support phagocytic killing (62, 63). CVD 1926

elicited multifunctionality in 44%, 66% and 33% of adult mice for

splenic CD4, PP-derived CD4, and splenic CD8 T cell responses,

respectively. In contrast, only 11%, 0%, and 22% of aged mice

showed multifunctional cytokine production for splenic CD4, PP-

derived CD4, and splenic CD8 T cell compartments, respectively.

IL-2 is essential for T cell survival and its production was detected

alongside IFN-g or TNF-a in all splenic and most PP-derived CD4

MF T cells in adult mice (64). Therefore, the presence of IL-2-

secreting T cells in the spleen and PP of adult mice may contribute

to the robust T cell responses observed in adult but not aged mice.

In addition to functional defects, T cells experience phenotypic

alterations with age; the frequency of naïve CD4 and CD8 T cell

populations in peripheral blood and in the terminal ileum are lower

for older adults (29, 65, 66). This is often accompanied by an

increase in T memory cells (66). In fact, we found that naïve aged

mice harbored high levels of CD44+ CD4 and CD8 T cells in the

spleen and PP compared to adult mice, signifying a greater

population of antigen-experienced T cells present prior to

vaccination. A proposed explanation for weaker vaccine responses

in older individuals is that the naïve T cell pool is reduced and limits

primary vaccine responses to novel antigens (20, 67). Altogether,
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the high bacterial loads observed in aged mice post challenge may

be due in part to their inferior T cell responses to CVD 1926.

We observed that CVD 1926 successfully induced antigen-

specific fecal IgA responses and functional T cells from the PPs in

adult mice, which are characteristic of an effective mucosal immune

response. The effect of age on tissue-specific vaccine responses is

becoming increasingly appreciated (68). We found that aged mice

produced lower antigen-specific IgA levels and weaker PP-derived

T cell responses, which are indicative of an impaired mucosal

immunity. Consistent with our findings, adults ≥60 years of age

that received the live oral vaccine, S. Typhi Ty21a also showed lower

intestinal T cell cytokine responses compared to younger

counterparts (29). As for cell-extrinsic age-related deficiencies, the

spleen and lymph nodes of older adults become fibrotic and lose

confined stromal networks of the lymphoid tissue (69, 70). It is

unknown whether these microenvironment alterations extend to

the lymphoid structure of mucosa (e.g., Peyer’s Patches). If so, this

may account for blunted mucosal responses to CVD 1926, similarly

to how lymphoid tissue fibrosis was associated with impaired

immunological responses to yellow fever vaccination (71). Future

studies on oral vaccine responses are warranted to better

understand mucosal immunosenescence.

In this study, we assessed the effect of vaccination with a live

oral S. Typhimurium vaccine on several immunological parameters

in aged versus adult mice. In addition to immunological changes,

other factors could potential ly contribute to reduced

immunogenicity and efficacy observed in aged mice. For example,

increased gut permeability and shifts in intestinal microbiota

composition have been shown to be associated with advanced age

and may negatively impact vaccine responses (72).

Previous live attenuated S. Typhimurium strains that were

immunogenic in murine models elicited similar vaccine responses

in human volunteers; suggesting that preclinical testing of NTS

vaccines in mice can translate clinically (73). Although there are

some phenotypic differences in B and T cell populations between

older humans and aged mice, the antibody and T cell responses to

several licensed vaccines in older adults reflects what has been

observed in aged murine models (74). Thus, we anticipate that

antibody and T cell responses to CVD 1926 in humans will

resemble what we observed herein.

Older adults would highly benefit from vaccines targeting

enteric illnesses caused by Salmonella spp., Escherichia coli,

Clostridium spp., and others. Live-attenuated vaccines given via

the oral route can elicit immunity at the local level within the

gastrointestinal tract as well as systemically and are easy to

administer and manufacture. Overall, this work provides the first

head-to-head comparison of NTS vaccine responses between adult

and aged mice and shows that the live oral CVD 1926 vaccine was

poorly immunogenic in aged mice. The findings herein are

important from a translational perspective, as these data indicate

that our live NTS vaccine candidate CVD 1926 requires further

optimization to be sufficiently immunogenic for older adults.

Strategies may include the addition of a mucosal adjuvant, use of

a heterologous live oral prime followed by a parenteral boost

regimen, and/or mutating Salmonella immune evasion genes to

increase immunogenicity. Our data also highlight the issue of
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mucosal immunosenescence and suggest that more research is

needed to understand the mechanisms underlying poor immune

responses to oral vaccines in aged hosts.
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