152 research outputs found

    Novel Quaternary Dilute Magnetic Semiconductor (Ga,Mn)(Bi,As): Magnetic and Magneto-Transport Investigations

    Full text link
    Magnetic and magneto-transport properties of thin layers of the (Ga,Mn)(Bi,As) quaternary dilute magnetic semiconductor grown by the low-temperature molecular-beam epitaxy technique on GaAs substrates have been investigated. Ferromagnetic Curie temperature and magneto-crystalline anisotropy of the layers have been examined by using magneto-optical Kerr effect magnetometry and low-temperature magneto-transport measurements. Postgrowth annealing treatment has been shown to enhance the hole concentration and Curie temperature in the layers. Significant increase in the magnitude of magnetotransport effects caused by incorporation of a small amount of Bi into the (Ga,Mn)As layers revealed in the planar Hall effect (PHE) measurements, is interpreted as a result of enhanced spin-orbit coupling in the (Ga,Mn)(Bi,As) layers. Two-state behaviour of the planar Hall resistance at zero magnetic field provides its usefulness for applications in nonvolatile memory devices.Comment: 10 pages, 3 figures, to be published in the Proceedings of ICSM-2016 conferenc

    Temperature dependence of the bandgap of Eu doped {ZnCdO/ZnO}30 multilayer structures

    Full text link
    In situ Eu-doped {ZnCdO/ZnO}30 multilayer systems were grown on p-type Si-substrates and on quartz substrates by plasma-assisted molecular beam epitaxy. Various Eu concentrations in the samples were achieved by controlling temperature of the europium effusion cell. The properties of as-grown and annealed {ZnCdO/ZnO}30:Eu multilayers were investigated using secondary ion mass spectrometry (SIMS) and X-ray diffraction methods. SIMS measurements showed that annealing at 700{\deg}C and 900{\deg}C practically did not change the Eu concentration and the rare earth depth profiles are uniform. It was found that the band gap depends on the concentration of Eu and it was changed by rapid thermal annealing. Varshni and Bose-Einstein equations were used to describe the temperature dependence of the band gap of {ZnCdO/ZnO}30:Eu multilayer structures and Debye and Einstein temperatures were obtained.Comment: 16 pages, 8 figures, 3 table

    Self-reduction of the native TiO2(110) surface during cooling after thermal annealing - in-operando investigations

    Get PDF
    We investigate the thermal reduction of TiO2 in ultra-high vacuum. Contrary to what is usually assumed, we observe that the maximal surface reduction occurs not during the heating, but during the cooling of the sample back to room temperature. We describe the self-reduction, which occurs as a result of differences in the energies of defect formation in the bulk and surface regions. The findings presented are based on X-ray photoelectron spectroscopy carried out in-operando during the heating and cooling steps. The presented conclusions, concerning the course of redox processes, are especially important when considering oxides for resistive switching and neuromorphic applications and also when describing the mechanisms related to the basics of operation of solid oxide fuel cells

    Effect of Misfit Strain in (Ga,Mn)(Bi,As) Epitaxial Layers on their Magnetic and Magneto-Transport Properties

    Full text link
    Effect of misfit strain in the layers of (Ga,Mn)(Bi,As) quaternary diluted magnetic semiconductor, epitaxially grown on either GaAs substrate or (In,Ga)As buffer, on their magnetic and magneto-transport properties has been investigated. High-resolution X-ray diffraction, applied to characterize the structural quality and misfit strain in the layers, proved that the layers were fully strained to the GaAs substrate or (In,Ga)As buffer under compressive or tensile strain, respectively. Ferromagnetic Curie temperature and magnetocrystalline anisotropy of the layers have been examined by using magneto-optical Kerr effect magnetometry and low-temperature magneto-transport measurements. Post-growth annealing treatment of the layers has been shown to enhance the hole concentration and Curie temperature in the layers.Comment: 8 pages, 3 figure

    Bridgman-grown (Cd,Mn)Te and (Cd,Mn)(Te,Se): A comparison of suitability for X and gamma detectors

    Full text link
    This study explores the suitability of semi-insulating compounds, specifically (Cd,Mn)Te and (Cd,Mn)(Te,Se), as materials for room temperature X-ray and gamma-ray detectors. These compounds were grown using the Bridgman method, known for its efficient growth rate. The investigation aims to compare their crystal structure, mechanical properties, optical characteristics, and radiation detection capabilities. The addition of selenium to (Cd,Mn)Te increased the compound's hardness. However, (Cd,Mn)(Te,Se) exhibited one order of magnitude higher etch pit density compared to (Cd,Mn)Te. Photoluminescence analysis at low temperatures revealed the presence of defect states in both materials, characterized by shallow and deep donor-acceptor pair transitions (DAP). Annealing in cadmium vapors effectively eliminated DAP luminescence in (Cd,Mn)Te but not in (Cd,Mn)(Te,Se). Spectroscopic performance assessments indicated that the (Cd,Mn)Te detector outperformed the (Cd,Mn)(Te,Se) detector in responding to a Co-57 source. The reduced performance in the latter case may be attributed to either the presence of a deep trap related to deep DAP luminescence, minimally affected by annealing, or the dominant presence of block-like structures in the samples, as indicated by X-ray diffraction measurements. The block-like structures in (Cd,Mn)(Te,Se) showed ten times larger misorientation angles compared to the (Cd,Mn)Te crystals. (Cd,Mn)Te crystal revealed excellent single crystal properties, demonstrated by narrower omega scan widths. The study also highlights the influence of grain boundaries and twins on crystal structure quality. In our opinion, Bridgman-grown (Cd,Mn)Te shows greater promise as a material for X-ray and gamma-ray detectors compared to (Cd,Mn)(Te,Se).Comment: 33 pages, 11 figure

    Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale

    Full text link
    Stable and switchable polarization of ferroelectric materials opens a possibility to electrically control their functional behavior. A particularly promising approach is to employ ferroelectric tunnel junctions where the polarization reversal in a ferroelectric barrier changes the tunneling current across the junction. Here, we demonstrate the reproducible tunneling electroresistance effect using a combination of Piezoresponse Force Microscopy (PFM) and Conducting Atomic Force Microscopy (C-AFM) techniques on nanometer-thick epitaxial BaTiO3 single crystal thin films on SrRuO3 bottom electrodes. Correlation between ferroelectric and electronic transport properties is established by the direct nanoscale visualization and control of polarization and tunneling current in BaTiO3 films. The obtained results show a change in resistance by about two orders of magnitude upon polarization reversal on a lateral scale of 20 nm at room temperature. These results are promising for employing ferroelectric tunnel junctions in non-volatile memory and logic devices, not involving charge as a state variable.Comment: 18 pages, 4 figure

    Topological crystalline insulator states in Pb(1-x)Sn(x)Se

    Full text link
    Topological insulators are a novel class of quantum materials in which time-reversal symmetry, relativistic (spin-orbit) effects and an inverted band structure result in electronic metallic states on the surfaces of bulk crystals. These helical states exhibit a Dirac-like energy dispersion across the bulk bandgap, and they are topologically protected. Recent theoretical proposals have suggested the existence of topological crystalline insulators, a novel class of topological insulators in which crystalline symmetry replaces the role of time-reversal symmetry in topological protection [1,2]. In this study, we show that the narrow-gap semiconductor Pb(1-x)Sn(x)Se is a topological crystalline insulator for x=0.23. Temperature-dependent magnetotransport measurements and angle-resolved photoelectron spectroscopy demonstrate that the material undergoes a temperature-driven topological phase transition from a trivial insulator to a topological crystalline insulator. These experimental findings add a new class to the family of topological insulators. We expect these results to be the beginning of both a considerable body of additional research on topological crystalline insulators as well as detailed studies of topological phase transitions.Comment: v2: published revised manuscript (6 pages, 3 figures) and supplementary information (5 pages, 8 figures
    corecore