10 research outputs found

    Evaluation of serum MMP-9 as predictive biomarker for antisense therapy in Duchenne

    Get PDF
    Duchenne Muscular Dystrophy (DMD) is a severe muscle disorder caused by lack of dystrophin. Predictive biomarkers able to anticipate response to the therapeutic treatments aiming at dystrophin re-expression are lacking. The objective of this study is to investigate Matrix Metalloproteinase-9 (MMP-9) as predictive biomarker for Duchenne. Two natural history cohorts were studied including 168 longitudinal samples belonging to 66 patients. We further studied 1536 samples obtained from 3 independent clinical trials with drisapersen, an antisense oligonucleotide targeting exon 51: an open label study including 12 patients; a phase 3 randomized, double blind, placebo controlled study involving 186 patients; an open label extension study performed after the phase 3. Analysis of natural history cohorts showed elevated MMP-9 levels in patients and a significant increase over time in longitudinal samples. MMP-9 decreased in parallel to clinical stabilization in the 12 patients involved in the open label study. The phase 3 study and subsequent extension study clarified that the decrease in MMP-9 levels was not predictive of treatment response. These data do not support the inclusion of serum MMP-9 as predictive biomarker for DMD patients

    Analysis of the Human Tissue-specific Expression by Genome-wide Integration of Transcriptomics and Antibody-based Proteomics

    Get PDF
    Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody-based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to approximate to 80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body

    Tissue-based map of the human proteome

    No full text
    Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes.We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body

    Tissue-based map of the human proteome

    No full text
    Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes.We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    No full text
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Muscle and cardiac therapeutic strategies for Duchenne muscular dystrophy: past, present, and future

    No full text
    corecore