392 research outputs found
Ab initio Wannier-function-based correlated calculations of Born effective charges of crystalline LiO and LiCl
In this paper we have used our recently developed ab initio
Wannier-function-based methodology to perform extensive Hartree-Fock and
correlated calculations on LiO and LiCl to compute their Born effective
charges. Results thus obtained are in very good agreement with the experiments.
In particular, for the case of LiO, we resolve a controversy originating
in the experiment of Osaka and Shindo {[}Solid State Commun. 51 (1984) 421] who
had predicted the effective charge of Li ions to be in the range 0.58--0.61, a
value much smaller compared to its nominal value of unity, thereby, suggesting
that the bonding in the material could be partially covalent. We demonstrate
that effective charge computed by Osaka and Shindo is the Szigeti charge, and
once the Born charge is computed, it is in excellent agreement with our
computed value. Mulliken population analysis of LiO also confirms ionic
nature of the bonding in the substance.Comment: 11 pages, 1 figure. To appear in Phys. Rev. B (Feb 2008
APPLICATION-DRIVEN OPTIMIZED SLA-AWARE PATH SELECTION FOR COLLABORATION APPLICATIONS
Currently, applications are at the mercy of a network’s infrastructure for the selection of a path within a network environment where more than one path exists between a source and a destination. Too often, the network infrastructure elements are unaware of an application’s requirements, or are aware of them in only a very rudimentary way. This situation is particularly dire for collaboration applications, which often have the most stringent requirements for path characteristics including delay, jitter, and packet loss. Techniques are presented herein that move the point of control for path selection to a collaboration application through a lightweight, in-band signaling mechanism that is exposed by the application to a network’s infrastructure for appropriated and differentiated traffic routing. Aspects of the presented techniques support the use of a per-application tunneled path for traffic flows, combined with a measurement methodology for those multiple paths and a mechanism for the application-level designation of specific and differentiated traffic pathing via an upstream router, allowing an application to measure performance across multiple paths and then signal to a network which path to choose based on per-application preference and service-level agreement (SLA) criteria
Heat Resistance of Human Pathogens in Sous-Vide Products Studied in Model Nutrition Media
Sous-vide (French for ʽunder vacuum’) is a professional cooking method, by which, under oxygen-free conditions and precise temperature control, not only cooking but preservation is achieved. During the process the food matrix is vacuum-packed and undergoes a mild heat treatment, thus achieving an enhanced nutrition value and a better organoleptic character. Due to the mild heat treatment (55 to 90 °C), the high water activity, and the slight acidity of raw materials, the microbial quality assurance is a great challenge even for professionals. The heat treatment does not assure the inactivation of pathogen spores. In our experiments we used Clostridium perfringens representing the spore-forming pathogens, and Salmonella Enteritidis as a the food-borne infection bacterium. Effects of various temperatures were measured in normal and sous-vide type vacuum packaging. Higher thermal death rate in vacuum packaging was demonstrated for Salmonella Enteritidis and Clostridium perfringens
Quantum tunneling dynamics of an interacting Bose-Einstein condensate through a Gaussian barrier
The transmission of an interacting Bose-Einstein condensate incident on a
repulsive Gaussian barrier is investigated through numerical simulation. The
dynamics associated with interatomic interactions are studied across a broad
parameter range not previously explored. Effective 1D Gross-Pitaevskii equation
(GPE) simulations are compared to classical Boltzmann-Vlasov equation (BVE)
simulations in order to isolate purely coherent matterwave effects. Quantum
tunneling is then defined as the portion of the GPE transmission not described
by the classical BVE. An exponential dependence of transmission on barrier
height is observed in the purely classical simulation, suggesting that
observing such exponential dependence is not a sufficient condition for quantum
tunneling. Furthermore, the transmission is found to be predominately described
by classical effects, although interatomic interactions are shown to modify the
magnitude of the quantum tunneling. Interactions are also seen to affect the
amount of classical transmission, producing transmission in regions where the
non-interacting equivalent has none. This theoretical investigation clarifies
the contribution quantum tunneling makes to overall transmission in
many-particle interacting systems, potentially informing future tunneling
experiments with ultracold atoms.Comment: Close to the published versio
Observation of a Modulational Instability in Bose-Einstein condensates
We observe the breakup dynamics of an elongated cloud of condensed Rb
atoms placed in an optical waveguide. The number of localized spatial
components observed in the breakup is compared with the number of solitons
predicted by a plane-wave stability analysis of the nonpolynomial nonlinear
Schr\"odinger equation, an effective one-dimensional approximation of the
Gross-Pitaevskii equation for cigar-shaped condensates. It is shown that the
numbers predicted from the fastest growing sidebands are consistent with the
experimental data, suggesting that modulational instability is the key
underlying physical mechanism driving the breakup.Comment: 6 pages, 5 figure
- …