832 research outputs found

    Strict Forest Reserve Research in the Margin of the Carpathians, the Vár-hegy Case-Study

    Get PDF
    Sixteen forest reserves are situated in the northern part of Hungary which belongs to the Carpathian region according to EURAC delimitation (Ruffini et al. 2006). These Hungarian forest reserves expand the natural forest remnant/forest reserve net of the Carpathians towards the lower hilly region, representing the deciduous beech and oak forest belts near their lower (xeric) distribution limits. This paper outlines the Hungarian forest reserves belonging to the Carpathian region and the preliminary results of current projects in the Vár-hegy Forest Reserve (Bükk Mts., Hungary) as a case study. The alteration of tree species composition was investigated here based on the reconstruction of forest history in the previous 130 years (management period) and analyses of forest stand inventory. In another project CO2 sequestration changes of these forest stands were modeled since the clear-cutting in the 1880th and carbon stored in the forest ecosystem compartments was estimated. Our results show that the forest reserve stands are presently in a transition state from the managed forest towards a more natural mixed forest with several age-classes

    Episodes of dormancy and eruption of the Late Pleistocene Ciomadul volcanic complex (Eastern Carpathians, Romania) constrained by zircon geochronology

    Get PDF
    Ciomadul is the youngest volcanic system in the Carpathian-Pannonian Region recording eruptive activity from ca. 1Ma to 30ka. Based on combined zircon U-Th and (U-Th)/He geochronology, Ciomadul volcanism is divided into two main eruptive periods: Old Ciomadul (1Ma – 300 ka; OCEP) and Young Ciomadul Eruptive Period (160–30ka; YCEP). OCEP activity comprises Eruptive Epochs 1–3, whereas new ages for eight lava domes and four pyroclastic units belonging to the YCEP lead to its further subdivision into two eruptive epochs: Eruptive Epochs 4 and 5. The extrusion of most of the lava domes occurred between 160 and 90 ka (Eruptive Epoch 4) during three eruptive episodes at ca. 155ka, 135 ka and 95 ka (Eruptive Episodes 4/1, 4/ 2 and 4/3, respectively) along a NE-SW lineament, which is perpendicular to the regional NW-SE trend of the Călimani-Gurghiu-Harghita volcanic chain. Eruptive Epoch 5 occurred after a ca. 40 kyr of quiescence at ca. 55–30 ka, and is mainly characterized by explosive eruptions with a minor lava dome building activity. All of the dated pyroclastic outcrops, together with the lava dome of Piscul Pietros, belong to the older Eruptive Episode 5/1, with an eruption age of 55–45ka. The eruption centers of Eruptive Epoch 5 are located at the junction of the conjugated NW-SE and NE-SW lineaments defined by the older eruptive centers. The whole-rock geochemistry of all studied samples is fairly homogeneous (SiO2=63–69wt%, K2O=3–4wt%). It also overlaps with the composition of the lava domes of the Old Ciomadul Eruptive Period, implying a monotonous geochemical characteristic for the past 1 Myr. The eruption rates for the Ciomadul volcanism were determined based on the erupted lava dome volume calculations, supplemented with the eruption ages. The activity peaked during the Eruptive Epoch 4 (160–90 ka), having an eruption rate of 0.1 km3 /kyr. In comparison, these values are 0.05km3 /kyr for the YCEP (160–30ka) and 0.01 km3 /kyr for the overall Ciomadul volcanism (1Ma–30 ka). Based on the geochemical characteristics, the quiescence periods and the lifetime of the complex, as well as the relatively small amount of erupted material, this volcanic system can be placed in a subduction-related post-collisional geodynamic setting, which shows strong chemical similarities to continental arc volcanism. The commonly found long repose times between the active phases suggest that the nature of a volcano cannot be understood solely based on the elapsed time since the last eruption. Instead, comprehensive geochronology, coupled with the understanding of the magma storage behavior could be a base of hazard assessment for volcanic fields, where the last eruptions occurred several 10's of thousand years ago and therefore they are not considered as potentially active

    Integrated approach to prevent functional decline in hospitalized elderly: the Prevention and Reactivation Care Program (PReCaP)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hospital related functional decline in older patients is an underestimated problem. Thirty-five procent of 70-year old patients experience functional decline during hospital admission in comparison with pre-illness baseline. This percentage increases considerably with age.</p> <p>Methods/design</p> <p>To address this issue, the Vlietland Ziekenhuis in The Netherlands has implemented an innovative program (PReCaP), aimed at reducing hospital related functional decline among elderly patients by offering interventions that are multidisciplinary, integrated and goal-oriented at the physical, social, and psychological domains of functional decline.</p> <p>Discussion</p> <p>This paper presents a detailed description of the intervention, which incorporates five distinctive elements: (1) Early identification of elderly patients with a high risk of functional decline, and if necessary followed by the start of the reactivation treatment within 48 h after hospital admission; (2) Intensive follow-up treatment for a selected patient group at the Prevention and Reactivation Centre (PRC); (3) Availability of multidisciplinary geriatric expertise; (4) Provision of support and consultation of relevant professionals to informal caregivers; (5) Intensive follow-up throughout the entire chain of care by a casemanager with geriatric expertise. Outcome and process evaluations are ongoing and results will be published in a series of future papers.</p> <p>Trial registration</p> <p>The Netherlands National Trial Register: <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2317">NTR2317</a></p
    corecore