68 research outputs found
Cell migration into the damaged brain mediated by increased cell adhesion
A new paper published in EMBO Molecular Medicine, Matsumoto et al (2024), elegantly shows that polysialic acid (PSA), has a new function—inhibition of migration. Molecular control over cell migration during brain development is essential for proper brain growth and positioning of neurons. Newborn cells frequently migrate long distances and in circuitous routes to their final destinations. Although many molecular regulators have been found that direct cell migration, the fundamental questions of how and why the cells exhibit such long-distance journeys is not well understood. This is especially true in the context of the rostral migratory stream (RMS) in the postnatal brain
Adult Mouse Subventricular Zone Stem and Progenitor Cells Are Sessile and Epidermal Growth Factor Receptor Negatively Regulates Neuroblast Migration
Background: The adult subventricular zone (SVZ) contains stem and progenitor cells that generate neuroblasts throughout life. Although it is well accepted that SVZ neuroblasts are migratory, recent evidence suggests their progenitor cells may also exhibit motility. Since stem and progenitor cells are proliferative and multipotential, if they were also able to move would have important implications for SVZ neurogenesis and its potential for repair. Methodology/Principal Findings: We studied whether SVZ stem and/or progenitor cells are motile in transgenic GFP+ slices with two photon time lapse microscopy and post hoc immunohistochemistry. We found that stem and progenitor cells; mGFAP-GFP+ cells, bright nestin-GFP+ cells and Mash1+ cells were stationary in the SVZ and rostral migratory stream (RMS). In our search for motile progenitor cells, we uncovered a population of motile bIII-tubulin+ neuroblasts that expressed low levels of epidermal growth factor receptor (EGFr). This was intriguing since EGFr drives proliferation in the SVZ and affects migration in other systems. Thus we examined the potential role of EGFr in modulating SVZ migration. Interestingly, EGFr low neuroblasts moved slower and in more tortuous patterns than EGFr-negative neuroblasts. We next questioned whether EGFr stimulation affects SVZ cell migration by imaging Gad65-GFP+ neuroblasts in the presence of transforming growth factor alpha (TGF-a), an EGFr-selective agonist. Indeed, acute exposure to TGF-a decreased the percentage of motile cells by approximately 40%
The role of inflammation in subventricular zone cancer
The adult subventricular zone (SVZ) stem cell niche has proven vital for discovering neurodevelopmental mechanisms and holds great potential in medicine for neurodegenerative diseases. Yet the SVZ holds a dark side - it can become tumorigenic. Glioblastomas can arise from the SVZ via cancer stem cells (CSCs). Glioblastoma and other brain cancers often have dismal prognoses since they are resistant to treatment. In this review we argue that the SVZ is susceptible to cancer because it contains stem cells, migratory progenitors and unusual inflammation. Theoretically, SVZ stem cells can convert to CSCs more readily than can postmitotic neural cells. Additionally, the robust long-distance migration of SVZ progenitors can be subverted upon tumorigenesis to an infiltrative phenotype. There is evidence that the SVZ, even in health, exhibits chronic low-grade cellular and molecular inflammation. Its inflammatory response to brain injuries and disease differs from that of other brain regions. We hypothesize that the SVZ inflammatory environment can predispose cells to novel mutations and exacerbate cancer phenotypes. This can be studied in animal models in which human mutations related to cancer are knocked into the SVZ to induce tumorigenesis and the CSC immune interactions that precede full-blown cancer. Importantly inflammation can be pharmacologically modulated providing an avenue to brain cancer management and treatment. The SVZ is accessible by virtue of its location surrounding the lateral ventricles and CSCs in the SVZ can be targeted with a variety of pharmacotherapies. Thus, the SVZ can yield aggressive tumors but can be targeted via several strategies
Nestin Reporter Transgene Labels Multiple Central Nervous System Precursor Cells
Embryonic neuroepithelia and adult subventricular zone (SVZ) stem and progenitor cells express nestin. We characterized a transgenic line that expresses enhanced green fluorescent protein (eGFP) specified to neural tissue by the second intronic enhancer of the nestin promoter that had several novel features. During embryogenesis, the dorsal telencephalon contained many and the ventral telencephalon few eGFP+ cells. eGFP+ cells were found in postnatal and adult neurogenic regions. eGFP+ cells in the SVZ expressed multiple phenotype markers, glial fibrillary acidic protein, Dlx, and neuroblast-specific molecules suggesting the transgene is expressed through the lineage. eGFP+ cell numbers increased in the SVZ after cortical injury, suggesting this line will be useful in probing postinjury neurogenesis. In non-neurogenic regions, eGFP was strongly expressed in oligodendrocyte progenitors, but not in astrocytes, even when they were reactive. This eGFP+ mouse will facilitate studies of proliferative neuroepithelia and adult neurogenesis, as well as of parenchymal oligodendrocytes
The long non-coding RNA Paupar promotes KAP1-dependent chromatin changes and regulates olfactory bulb neurogenesis
Many long non-coding RNAs (lncRNAs) are expressed during central nervous system (CNS) development, yet their in vivo roles and mechanisms of action remain poorly understood. Paupar, a CNS-expressed lncRNA, controls neuroblastoma cell growth by binding and modulating the activity of transcriptional regulatory elements in a genome-wide manner. We show here that the Paupar lncRNA directly binds KAP1, an essential epigenetic regulatory protein, and thereby regulates the expression of shared target genes important for proliferation and neuronal differentiation. Paupar promotes KAP1 chromatin occupancy and H3K9me3 deposition at a subset of distal targets, through the formation of a ribonucleoprotein complex containing Paupar, KAP1 and the PAX6 transcription factor. Paupar-KAP1 genome-wide co-occupancy reveals a fourfold enrichment of overlap between Paupar and KAP1 bound sequences, the majority of which also appear to associate with PAX6. Furthermore, both Paupar and Kap1 loss-of-function in vivo disrupt olfactory bulb neurogenesis. These observations provide important conceptual insights into the trans-acting modes of lncRNA-mediated epigenetic regulation and the mechanisms of KAP1 genomic recruitment, and identify Paupar and Kap1 as regulators of neurogenesis in vivo
What has single-cell transcriptomics taught us about long non-coding RNAs in the ventricular-subventricular zone?
Long non-coding RNA (lncRNA) function is mediated by the process of transcription or through transcript-dependent associations with proteins or nucleic acids to control gene regulatory networks. Many lncRNAs are transcribed in the ventricular-subventricular zone (V-SVZ), a postnatal neural stem cell niche. lncRNAs in the V-SVZ are implicated in neurodevelopmental disorders, cancer, and brain disease, but their functions are poorly understood. V-SVZ neurogenesis capacity declines with age due to stem cell depletion and resistance to neural stem cell activation. Here we analyzed V-SVZ transcriptomics by pooling current single-cell RNA-seq data. They showed consistent lncRNA expression during stem cell activation, lineage progression, and aging. In conjunction with epigenetic and genetic data, we predicted V-SVZ lncRNAs that regulate stem cell activation and differentiation. Some of the lncRNAs validate known epigenetic mechanisms, but most remain uninvestigated. Our analysis points to several lncRNAs that likely participate in key aspects of V-SVZ stem cell activation and neurogenesis in health and disease
Regulation of immunological tolerance by the p53-inhibitor iASPP
Maintenance of immunological homeostasis between tolerance and autoimmunity is essential for the prevention of human diseases ranging from autoimmune disease to cancer. Accumulating evidence suggests that p53 can mitigate phagocytosis-induced adjuvanticity thereby promoting immunological tolerance following programmed cell death. Here we identify Inhibitor of Apoptosis Stimulating p53 Protein (iASPP), a negative regulator of p53 transcriptional activity, as a regulator of immunological tolerance. iASPP-deficiency promoted lung adenocarcinoma and pancreatic cancer tumorigenesis, while iASPP-deficient mice were less susceptible to autoimmune disease. Immune responses to iASPP-deficient tumors exhibited hallmarks of immunosuppression, including activated regulatory T cells and exhausted CD8+ T cells. Interestingly, iASPP-deficient tumor cells and tumor-infiltrating myeloid cells, CD4+, and γδ T cells expressed elevated levels of PD-1H, a recently identified transcriptional target of p53 that promotes tolerogenic phagocytosis. Identification of an iASPP/p53 axis of immune homeostasis provides a therapeutic opportunity for both autoimmune disease and cancer
Functional integration of 3D-printed cerebral cortical tissue into a brain lesion
Engineering human tissue with diverse cell types and desired cellular architectures and functions is a considerable challenge. The cerebral cortex, which has a layered cellular architecture composed of layer-specific neurons organised into vertical columns, delivers higher cognition through intricately wired neural circuits. However, current tissue engineering approaches cannot produce such structures. Here, we use a droplet printing technique to fabricate tissues comprising simplified cerebral cortical columns. Human induced pluripotent stem cells (hiPSCs) were differentiated into upper- and deep-layer neural progenitors, which were then printed to form cerebral cortical tissues with a two-layer organization. The tissues showed layer-specific biomarker expression and developed an integrated network of processes. Implantation of the printed cortical tissues into mouse brain explants resulted in substantial implant-host integration across the tissue boundaries as demonstrated by the projection of processes, the migration of neurons and the appearance of correlated Ca2+ signals. The approach we have developed might be used for the evaluation of drugs and nutrients that promote tissue integration. Importantly, our approach might be applied in personalised implantation treatments that restore the cellular structure and function of a damaged brain by using 3D tissues derived from a patient’s own iPSCs
Integration of 3D-printed cerebral cortical tissue into an ex vivo lesioned brain slice
Engineering human tissue with diverse cell types and architectures remains challenging. The cerebral cortex, which has a layered cellular architecture composed of layer-specific neurons organised into vertical columns, delivers higher cognition through intricately wired neural circuits. However, current tissue engineering approaches cannot produce such structures. Here, we use a droplet printing technique to fabricate tissues comprising simplified cerebral cortical columns. Human induced pluripotent stem cells are differentiated into upper- and deep-layer neural progenitors, which are then printed to form cerebral cortical tissues with a two-layer organization. The tissues show layer-specific biomarker expression and develop a structurally integrated network of processes. Implantation of the printed cortical tissues into ex vivo mouse brain explants results in substantial structural implant-host integration across the tissue boundaries as demonstrated by the projection of processes and the migration of neurons, and leads to the appearance of correlated Ca2+ oscillations across the interface. The presented approach might be used for the evaluation of drugs and nutrients that promote tissue integration. Importantly, our methodology offers a technical reservoir for future personalized implantation treatments that use 3D tissues derived from a patient’s own induced pluripotent stem cells
3,4,5-Tricaffeoylquinic acid induces adult neurogenesis and improves deficit of learning and memory in aging model senescence-accelerated prone 8 mice
Caffeoylquinic acid (CQA) is a natural polyphenol with evidence of antioxidant and neuroprotective effects and prevention of deficits in spatial learning and memory. We studied the cognitive-enhancing effect of 3,4,5-tricaffeoylquinic acid (TCQA) and explored its cellular and molecular mechanism in the senescence-accelerated mouse prone 8 (SAMP8) model of aging and Alzheimer’s disease as well as in human neural stem cells (hNSCs). Mice were fed with 5 mg/kg of TCQA for 30 days and were tested in the Morris water maze (MWM). Brain tissues were collected for immunohistochemical detection of bromodeoxyuridine (BrdU) to detect activated stem cells and newborn neurons. TCQA-treated SAMP8 exhibited significantly improved cognitive performance in MWM compared to water-treated SAMP8. TCQA-treated SAMP8 mice also had significantly higher numbers of BrdU+/glial fibrillary acidic protein (GFAP+) and BrdU+/Neuronal nuclei (NeuN+) cells in the dentate gyrus (DG) neurogenic niche compared with untreated SAMP8. In hNSCs, TCQA induced cell cycle arrest at G0/G1, actin cytoskeleton organization, chromatin remodeling, neuronal differentiation, and bone morphogenetic protein signaling. The neurogenesis promoting effect of TCQA in the DG of SAMP8 mice might explain the cognition-enhancing influence of TCQA observed in our study, and our hNSCs in aggregate suggest a therapeutic potential for TCQA in aging-associated diseases
- …