11 research outputs found

    Az Őslénytani Tanszék Gyűjteményének története a Cephalopodák tükrében

    Get PDF
    Az Őslénytani Tanszék megalapítása – 1882 – óta rendelkezik az oktatást és kutatást segítő gyűjteménnyel. Az Egyetem új lágymányosi tömbjébe költözéskor ezt a paleontológiai (ősállattani) gyűjteményt két külön részre osztva helyezték el. Nagyobb, gyűjtési területek és rétegek szerint rendezett részét az Egyetem C épületének alagsorában, a kisebb részét, pedig az Őslénytani Tanszék 303. sz. szobájában. A Tanszéki, mint gyakorló – bemutató gyűjtemény a hallgatók oktatását segíti. A költözés során adódott a lehetőség a gyűjtemény újrarendezésére, megtisztítására és katalógusának revíziójára. A gyűjteménynek egy részét, SZENTE ISTVÁN javaslatára a Cephalopodákat kezdtem el rendezni 2004 tavaszán. A rendezés közben felvetődött kérdések az eredetileg csak egyszerű újrakatalogizálásnak indult munkát gyűjteménytörténetivé szélesítettek. Ennek a munkának a jelenlegi állásáról, a már megválaszolt, és a még megválaszolatlan kérdésekről szól a jelen dolgozat

    Late Triassic platform, slope and basin deposits in the Pilis Mountains, Transdanubian Range, Hungary

    Get PDF
    Abstract In the Pilis Range, NW of Budapest, contemporaneous Upper Triassic platform and basin facies occur. The paper presents the extent and basic characteristics of these facies with interpretation of their depositional conditions, and summarizes the available biostratigraphic data. Based on previous and recent studies a general depositional model is displayed and the history of the basin evolution is outlined. Within the Dachstein Platform an extensional intraplatform basin (Feketehegy Basin) came into existence during the middle part of the Norian. An asymmetric basin was formed, bounded by steep and gentle slopes, respectively. The platform progradation that may have resulted in the termination of the basin began at the gentle margin probably in the latest Norian-earliest Rhaetian

    The Budaörs-1 well revisited: contributions to the Triassic stratigraphy, sedimentology, and magmatism of the southwestern part of the Buda Hills

    Get PDF
    The 1,200-m-deep Budaörs-1 borehole provided important data for our understanding of the stratigraphy and tectonic setting of the southern part of the Buda Hills. Although previous reports contained valid observations and interpretations, a number of open questions remained. The importance of this borehole and the unsolved problems motivated us to revisit the archived core. The new studies confirmed the existing stratigraphic assignment for the upper dolomite unit (Budaörs Dolomite Formation) as the dasycladalean alga flora proved its late Anisian to Ladinian age assignment. An andesite dike was intersected within the Budaörs Dolomite. U–Pb age determination performed on zircon crystals revealed a Carnian age (~233 Ma), and settled the long-lasting dispute on the age of this dike, proving the existence of a Carnian volcanic activity in this area after the deposition of the Budaörs Dolomite. Palynostratigraphic studies provided evidence for a late Carnian to early Norian age of the upper part of the lower unit (Mátyáshegy Formation). This result verified an earlier assumption and reinforced the significance of the tectonic contact between the upper unit (Budaörs Formation) and the lower unit (Mátyáshegy Formation). Based on structural observations and construction of cross sections, two alternative models are presented for the structural style and kinematics of the contact zone between the Budaörs and Mátyáshegy Formations. Model A suggests a Cretaceous age for the juxtaposition, along an E–W striking sinistral transpressional fault. In contrast, model B postulates dextral transpression and an Eocene age for the deformation. The latter one is better supported by the scattered dip data; however, both scenarios are considered in this paper as possible models

    Topological Dissection of Proteomic Changes Linked to the Limbic Stage of Alzheimer’s Disease

    No full text
    Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common cause of dementia worldwide. In AD, neurodegeneration spreads throughout different areas of the central nervous system (CNS) in a gradual and predictable pattern, causing progressive memory decline and cognitive impairment. Deposition of neurofibrillary tangles (NFTs) in specific CNS regions correlates with the severity of AD and constitutes the basis for disease classification into different Braak stages (I-VI). Early clinical symptoms are typically associated with stages III-IV (i.e., limbic stages) when the involvement of the hippocampus begins. Histopathological changes in AD have been linked to brain proteome alterations, including aberrant posttranslational modifications (PTMs) such as the hyperphosphorylation of Tau. Most proteomic studies to date have focused on AD progression across different stages of the disease, by targeting one specific brain area at a time. However, in AD vulnerable regions, stage-specific proteomic alterations, including changes in PTM status occur in parallel and remain poorly characterized. Here, we conducted proteomic, phosphoproteomic, and acetylomic analyses of human postmortem tissue samples from AD (Braak stage III-IV, n=11) and control brains (n=12), covering all anatomical areas affected during the limbic stage of the disease (total hippocampus, CA1, entorhinal and perirhinal cortices). Overall, ~6000 proteins, ~9000 unique phosphopeptides and 221 acetylated peptides were accurately quantified across all tissues. Our results reveal significant proteome changes in AD brains compared to controls. Among others, we have observed the dysregulation of pathways related to the adaptive and innate immune responses, including several altered antimicrobial peptides (AMPs). Notably, some of these changes were restricted to specific anatomical areas, while others altered according to disease progression across the regions studied. Our data highlights the molecular heterogeneity of AD and the relevance of neuroinflammation as a major player in AD pathology. Data are available via ProteomeXchange with identifier PXD027173

    The human melanoma proteome atlas—Defining the molecular pathology

    Get PDF
    The MM500 study is an initiative to map the protein levels in malignant melanoma tumor samples, focused on in‐depth histopathology coupled to proteome characterization. The protein levels and localization were determined for a broad spectrum of diverse, surgically isolated melanoma tumors originating from multiple body locations. More than 15,500 proteoforms were identified by mass spectrometry, from which chromosomal and subcellular localization was annotated within both primary and metastatic melanoma. The data generated by global proteomic experiments covered 72% of the proteins identified in the recently reported high stringency blueprint of the human proteome. This study contributes to the NIH Cancer Moonshot initiative combining detailed histopathological presentation with the molecular characterization for 505 melanoma tumor samples, localized in 26 organs from 232 patients
    corecore