23 research outputs found

    A Demonstration of using Partnerships and Private Lands Conservation to Evaluate Livestock Grazing as a Management Tool for Greater Sage Grouse in Central Montana

    Get PDF
    Partnerships across agencies and land ownerships established to maintain wildlife-compatible “working landscapes” are critical for conserving and managing wildlife in the West.  Preliminary results from the first three years of a 10-yr study in central Montana demonstrate this management approach.  We are evaluating prescribed grazing systems implemented by NRCS’s Sage Grouse Initiative (SGI) that are designed to improve hiding cover and food availability for Greater sage grouse (Centrocercus urophasianus) during critical life stages via voluntary, incentive-based modifications of livestock grazing management.  Extensive vegetation sampling across 8 SGI-enrolled ranches and 20 non-enrolled ranches in 2013 revealed significant increases in residual grass height, live grass height, and herbaceous vegetation cover on SGI-enrolled lands. In 2011-2013, we monitored adult female sage-grouse and chicks with radiotelemetry to measure vital rates and habitat use. Annual hen survival ranged from 57-74 percent, nest success ranged from 12-61 percent, and chick survival ranged from 9-23 percent.  Using an information theoretic approach in program MARK, the top-ranked nest success model showed that grass height was positively correlated with nest success.   During late nesting to early brood rearing periods of 2012 and 2013 we used pitfall traps to collected ground-dwelling arthropods from cattle grazed and rest-rotation phase pastures enrolled in the SGI program. Collected arthropods were identified and appropriate specimens were classified as sage grouse chick food items. During both years of study, food item catches were greatest (P < 0.03) in rested versus grazed pastures indicating that strategic pasture rest may increase the availability of sage grouse chick food resources

    Partial Inhibition of Estrogen-Induced Mammary Carcinogenesis in Rats by Tamoxifen: Balance between Oxidant Stress and Estrogen Responsiveness

    Get PDF
    Epidemiological and experimental evidences strongly support the role of estrogens in breast tumor development. Both estrogen receptor (ER)-dependent and ER-independent mechanisms are implicated in estrogen-induced breast carcinogenesis. Tamoxifen, a selective estrogen receptor modulator is widely used as chemoprotectant in human breast cancer. It binds to ERs and interferes with normal binding of estrogen to ERs. In the present study, we examined the effect of long-term tamoxifen treatment in the prevention of estrogen-induced breast cancer. Female ACI rats were treated with 17β-estradiol (E2), tamoxifen or with a combination of E2 and tamoxifen for eight months. Tissue levels of oxidative stress markers 8-iso-Prostane F2α (8-isoPGF2α), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, and oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG) were quantified in the mammary tissues of all the treatment groups and compared with age-matched controls. Levels of tamoxifen metabolizing enzymes cytochrome P450s as well as estrogen responsive genes were also quantified. At necropsy, breast tumors were detected in 44% of rats co-treated with tamoxifen+E2. No tumors were detected in the sham or tamoxifen only treatment groups whereas in the E2 only treatment group, the tumor incidence was 82%. Co-treatment with tamoxifen decreased GPx and catalase levels; did not completely inhibit E2-mediated oxidative DNA damage and estrogen-responsive genes monoamine oxygenase B1 (MaoB1) and cell death inducing DFF45 like effector C (Cidec) but differentially affected the levels of tamoxifen metabolizing enzymes. In summary, our studies suggest that although tamoxifen treatment inhibits estrogen-induced breast tumor development and increases the latency of tumor development, it does not completely abrogate breast tumor development in a rat model of estrogen-induced breast cancer. The inability of tamoxifen to completely inhibit E2-induced breast carcinogenesis may be because of increased estrogen-mediated oxidant burden

    Designed Enclosure Enables Guest Binding Within the 4200 A Cavity of a Self-Assembled Cube

    No full text
    Metal–organic self-assembly has proven to be of great use in constructing structures of increasing size and intricacy, but the largest assemblies lack the functions associated with the ability to bind guests. Here we demonstrate the self-assembly of two simple organic molecules with CdII and PtII into a giant heterometallic supramolecular cube which is capable of binding a variety of mono- and dianionic guests within an enclosed cavity greater than 4200 Å3. Its structure was established by X-ray crystallography and cryogenic transmission electron microscopy. This cube is the largest discrete abiological assembly that has been observed to bind guests in solution; cavity enclosure and coulombic effects appear to be crucial drivers of host–guest chemistry at this scale. The degree of cavity occupancy, however, appears less important: the largest guest studied, bound the most weakly, occupying only 11¿% of the host cavity

    Genome Sequences of Mycoplasma alligatoris A21JP2T and Mycoplasma crocodyli MP145Tâ–ż

    No full text
    Mycoplasma alligatoris and Mycoplasma crocodyli are closely related siblings, one being highly virulent and the other relatively attenuated. We compared their genomes to better understand the mechanisms and origins of M. alligatoris' remarkable virulence amid a clade of harmless or much less virulent species. Although its chromosome was refractory to closure, M. alligatoris differed most notably by its complement of sialidases and other genes of the N-acetylneuraminate scavenging and catabolism pathway

    Texture analysis of computed tomographic images in osteoporotic patients with sinus lift bone graft reconstruction

    Get PDF
    International audienceObjective: Bone implants are now widely used to replace missing teeth. Bone grafting (sinus lift) is a very useful way to increase the bone volume of the maxilla in patients with bone atrophy. There is a 6-9 mo. delay for the receiver grafted site to heal before the implants can be placed. Computed tomography is a useful method to measure the amount of remaining bone before implantation and to evaluate the quality of the receiver bone at the end of the healing period. Texture analysis is a non-invasive method useful to characterize bone microarchitecture on X-ray images. Patients and methods: Ten patients in which a sinus lift surgery was necessary before implantation were analyzed in the present study. All had a bone reconstruction with a combination of a biomaterial (β-TCP) and autograft bone harvested at the chin. Computed tomographic images were obtained before grafting (t0), at mid-interval (t1: 4.2 ± 0.7 mo.) and before implant placement (t2: 9.2 ± 0.6 mo.). Texture analysis was done with the run-length method. Results: A significant increase of texture parameters at t1 reflected a gain of homogeneity due to the graft and the beginning of bone remodeling. At t2, some parameters remained high and corresponded to the persistence of bone trabeculae while the resorption of biomaterials was identified by other parameters which tended to return to pre-graft values. Conclusion: Texture analysis identified changes during the healing of the receiver site. Clinical relevance: The method is known to correlate with microarchitectural changes in bone and could be a useful approach to characterized osseointegrated grafts

    Normative values for CT-based texture analysis of vertebral bodies in dual X-ray absorptiometry-confirmed, normally mineralized subjects

    No full text
    OBJECTIVES: To develop age-, gender-, and regional-specific normative values for texture analysis (TA) of spinal computed tomography (CT) in subjects with normal bone mineral density (BMD), as defined by dual X-ray absorptiometry (DXA), and to determine age-, gender-, and regional-specific differences. MATERIALS AND METHODS: In this retrospective, IRB-approved study, TA was performed on sagittal CT bone images of the thoracic and lumbar spine using dedicated software (MaZda) in 141 individuals with normal DXA BMD findings. Numbers of female and male subjects were balanced in each of six age decades. Three hundred and five TA features were analyzed in thoracic and lumbar vertebrae using free-hand regions-of-interest. Intraclass correlation (ICC) coefficients were calculated for determining intra- and inter-observer agreement of each feature. Further dimension reduction was performed with correlation analyses. RESULTS: The TA features with an ICC  0.8 with other features were excluded from further analysis for dimension reduction. From the remaining 31 texture features, a significant correlation with age was found for the features mean (r = -0.489, p < 0.001), variance (r = -0.681, p < 0.001), kurtosis (r = 0.273, p < 0.001), and WavEnLL_s4 (r = 0.273, p < 0.001). Significant differences were found between genders for various higher-level texture features (p < 0.001). Regional differences among the thoracic spine, thoracic-lumbar junction, and lumbar spine were found for most TA features (p < 0.021). CONCLUSION: This study established normative values of TA features on CT images of the spine and showed age-, gender-, and regional-specific differences in individuals with normal BMD as defined by DXA
    corecore