137 research outputs found

    Evidence of High Harmonics from Echo-Enabled Harmonic Generation for Seeding X-Ray Free Electron Lasers

    Get PDF
    Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science

    Cavity BPM System Tests for the ILC Spectrometer

    Full text link
    The main physics programme of the International Linear Collider (ILC) requires a measurement of the beam energy at the interaction point with an accuracy of 10−410^{-4} or better. To achieve this goal a magnetic spectrometer using high resolution beam position monitors (BPMs) has been proposed. This paper reports on the cavity BPM system that was deployed to test this proposal. We demonstrate sub-micron resolution and micron level stability over 20 hours for a 1\m long BPM triplet. We find micron-level stability over 1 hour for 3 BPM stations distributed over a 30\m long baseline. The understanding of the behaviour and response of the BPMs gained from this work has allowed full spectrometer tests to be carried out.Comment: Paper submitted to Nuclear Instruments and Methods. 35 pages, 23 figure

    Magnetic measurements and simulations for a 4-magnet dipole chicane for the International Linear Collider

    Get PDF
    T-474 at SLAC is a prototype BPM-based energy spectrometer for the ILC. We describe magnetic measurements and simulations for the 4-magnet chicane used in T-474

    Precision Measurement of the Weak Mixing Angle in Moller Scattering

    Get PDF
    We report on a precision measurement of the parity-violating asymmetry in fixed target electron-electron (Moller) scattering: A_PV = -131 +/- 14 (stat.) +/- 10 (syst.) parts per billion, leading to the determination of the weak mixing angle \sin^2\theta_W^eff = 0.2397 +/- 0.0010 (stat.) +/- 0.0008 (syst.), evaluated at Q^2 = 0.026 GeV^2. Combining this result with the measurements of \sin^2\theta_W^eff at the Z^0 pole, the running of the weak mixing angle is observed with over 6 sigma significance. The measurement sets constraints on new physics effects at the TeV scale.Comment: 4 pages, 2 postscript figues, submitted to Physical Review Letter

    Observation of Parity Nonconservation in Moller Scattering

    Full text link
    We report a measurement of the parity-violating asymmetry in fixed target electron-electron (Moller) scattering: A_PV = -175 +/- 30 (stat.) +/- 20 (syst.) parts per billion. This first direct observation of parity nonconservation in Moller scattering leads to a measurement of the electron's weak charge at low energy Q^e_W = -0.053 +/- 0.011. This is consistent with the Standard Model expectation at the current level of precision: sin^2\theta_W(M_Z)_MSbar = 0.2293 +/- 0.0024 (stat.) +/- 0.0016 (syst.) +/- 0.0006 (theory).Comment: Version 3 is the same as version 2. These versions contain minor text changes from referee comments and a change in the extracted value of Q^e_W and sin^2\theta_W due to a change in the theoretical calculation of the bremsstrahulung correction (ref. 16

    Nuclear matter response function

    Get PDF
    The response function of nuclear matter is determined from experimental data on inclusive electron scattering from finite nuclei

    Inclusive Electron Scattering from Nuclei at x≃1x \simeq 1

    Get PDF
    The inclusive A(e,e') cross section for x≃1x \simeq 1 was measured on 2^2H, C, Fe, and Au for momentum transfers Q2Q^2 from 1-7 (GeV/c)2^2. The scaling behavior of the data was examined in the region of transition from y-scaling to x-scaling. Throughout this transitional region, the data exhibit ξ\xi-scaling, reminiscent of the Bloom-Gilman duality seen in free nucleon scattering.Comment: 4 pages, RevTeX; 4 figures (postscript in .tar.Z file

    Precision Determination of the Neutron Spin Structure Function g1n

    Full text link
    We report on a precision measurement of the neutron spin structure function g1ng^n_1 using deep inelastic scattering of polarized electrons by polarized ^3He. For the kinematic range 0.014<x<0.7 and 1 (GeV/c)^2< Q^2< 17 (GeV/c)^2, we obtain ∫0.0140.7g1n(x)dx=−0.036±0.004(stat)±0.005(syst)\int^{0.7}_{0.014} g^n_1(x)dx = -0.036 \pm 0.004 (stat) \pm 0.005 (syst) at an average Q2=5(GeV/c)2Q^2=5 (GeV/c)^2. We find relatively large negative values for g1ng^n_1 at low xx. The results call into question the usual Regge theory method for extrapolating to x=0 to find the full neutron integral ∫01g1n(x)dx\int^1_0 g^n_1(x)dx, needed for testing quark-parton model and QCD sum rules.Comment: 5 pages, 3 figures To be published in Phys. Rev. Let
    • …
    corecore