32 research outputs found

    RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures

    Get PDF
    Background: Recent discoveries concerning novel functions of RNA, such as RNA interference, have contributed towards the growing importance of the field. In this respect, a deeper knowledge of complex three-dimensional RNA structures is essential to understand their new biological functions. A number of bioinformatic tools have been proposed to explore two major structural databases (PDB, NDB) in order to analyze various aspects of RNA tertiary structures. One of these tools is RNA FRABASE 1.0, the first web-accessible database with an engine for automatic search of 3D fragments within PDB-derived RNA structures. This search is based upon the user-defined RNA secondary structure pattern. In this paper, we present and discuss RNA FRABASE 2.0. This second version of the system represents a major extension of this tool in terms of providing new data and a wide spectrum of novel functionalities. An intuitionally operated web server platform enables very fast user-tailored search of three-dimensional RNA fragments, their multi-parameter conformational analysis and visualization. Description: RNA FRABASE 2.0 has stored information on 1565 PDB-deposited RNA structures, including all NMR models. The RNA FRABASE 2.0 search engine algorithms operate on the database of the RNA sequences and the new library of RNA secondary structures, coded in the dot-bracket format extended to hold multi-stranded structures and to cover residues whose coordinates are missing in the PDB files. The library of RNA secondary structures (and their graphics) is made available. A high level of efficiency of the 3D search has been achieved by introducing novel tools to formulate advanced searching patterns and to screen highly populated tertiary structure elements. RNA FRABASE 2.0 also stores data and conformational parameters in order to provide "on the spot" structural filters to explore the three-dimensional RNA structures. An instant visualization of the 3D RNA structures is provided. RNA FRABASE 2.0 is freely available at http://rnafrabase.cs.put.poznan.pl webcite. Conclusions: RNA FRABASE 2.0 provides a novel database and powerful search engine which is equipped with new data and functionalities that are unavailable elsewhere. Our intention is that this advanced version of the RNA FRABASE will be of interest to all researchers working in the RNA field

    New prediction categories in CASP15

    Get PDF
    Prediction categories in the Critical Assessment of Structure Prediction (CASP) experiments change with the need to address specific problems in structure modeling. In CASP15, four new prediction categories were introduced: RNA structure, ligand-protein complexes, accuracy of oligomeric structures and their interfaces, and ensembles of alternative conformations. This paper lists technical specifications for these categories and describes their integration in the CASP data management system

    RNA FRABASE version 1.0: an engine with a database to search for the three-dimensional fragments within RNA structures

    Get PDF
    The RNA FRABASE is a web-accessible engine with a relational database, which allows for the automatic search of user-defined, 3D RNA fragments within a set of RNA structures. This is a new tool to search and analyse RNA structures, directed at the 3D structure modelling. The user needs to input either RNA sequence(s) and/or secondary structure(s) given in a ‘dot-bracket’ notation. The algorithm searching for the requested 3D RNA fragments is very efficient. As of August 2007, the database contains: (i) RNA sequences and secondary structures, in the ‘dot-bracket’ notation, derived from 1065 protein data bank (PDB)-deposited RNA structures and their complexes, (ii) a collection of atom coordinates of unmodified and modified nucleotide residues occurring in RNA structures, (iii) calculated RNA torsion angles and sugar pucker parameters and (iv) information about base pairs. Advanced query involves filters sensitive to: modified residue contents, experimental method used and limits of conformational parameters. The output list of query-matching RNA fragments gives access to their coordinates in the PDB-format files, ready for direct download and visualization, conformational parameters and information about base pairs. The RNA FRABASE is automatically, monthly updated and is freely accessible at http://rnafrabase.ibch.poznan.pl (mirror at http://cerber.cs.put.poznan.pl/rnadb)

    RNApolis: Computational Platform for RNA Structure Analysis

    No full text
    In the 1970s, computer scientists began to engage in research in the field of structural biology. The first structural databases, as well as models and methods supporting the analysis of biomolecule structures, started to be created. RNA was put at the centre of scientific interest quite late. However, more and more methods dedicated to this molecule are currently being developed. This paper presents RNApolis - a new computing platform, which offers access to seven bioinformatic tools developed to support the RNA structure study. The set of tools include a structural database and systems for predicting, modelling, annotating and evaluating the RNA structure. RNApolis supports research at different structural levels and allows the discovery, establishment, and validation of relationships between the primary, secondary and tertiary structure of RNAs. The platform is freely available at http://rnapolis.p

    Discovering Structural Motifs in miRNA Precursors from the Viridiplantae Kingdom

    No full text
    A small non-coding molecule of microRNA (19–24 nt) controls almost every biological process, including cellular and physiological, of various organisms’ lives. The amount of microRNA (miRNA) produced within an organism is highly correlated to the organism’s key processes, and determines whether the system works properly or not. A crucial factor in plant biogenesis of miRNA is the Dicer Like 1 (DCL1) enzyme. Its responsibility is to perform the cleavages in the miRNA maturation process. Despite everything we already know about the last phase of plant miRNA creation, recognition of miRNA by DCL1 in pre-miRNA structures of plants remains an enigma. Herein, we present a bioinformatic procedure we have followed to discover structure patterns that could guide DCL1 to perform a cleavage in front of or behind an miRNA:miRNA* duplex. The patterns in the closest vicinity of microRNA are searched, within pre-miRNA sequences, as well as secondary and tertiary structures. The dataset consists of structures of plant pre-miRNA from the Viridiplantae kingdom. The results confirm our previous observations based on Arabidopsis thaliana precursor analysis. Hereby, our hypothesis was tested on pre-miRNAs, collected from the miRBase database to show secondary structure patterns of small symmetric internal loops 1-1 and 2-2 at a 1–10 nt distance from the miRNA:miRNA* duplex

    LCS-TA to identify similar fragments in RNA 3D structures

    No full text
    Abstract Background In modern structural bioinformatics, comparison of molecular structures aimed to identify and assess similarities and differences between them is one of the most commonly performed procedures. It gives the basis for evaluation of in silico predicted models. It constitutes the preliminary step in searching for structural motifs. In particular, it supports tracing the molecular evolution. Faced with an ever-increasing amount of available structural data, researchers need a range of methods enabling comparative analysis of the structures from either global or local perspective. Results Herein, we present a new, superposition-independent method which processes pairs of RNA 3D structures to identify their local similarities. The similarity is considered in the context of structure bending and bonds’ rotation which are described by torsion angles. In the analyzed RNA structures, the method finds the longest continuous segments that show similar torsion within a user-defined threshold. The length of the segment is provided as local similarity measure. The method has been implemented as LCS-TA algorithm (Longest Continuous Segments in Torsion Angle space) and is incorporated into our MCQ4Structures application, freely available for download from http://www.cs.put.poznan.pl/tzok/mcq/ . Conclusions The presented approach ties torsion-angle-based method of structure analysis with the idea of local similarity identification by handling continuous 3D structure segments. The first method, implemented in MCQ4Structures, has been successfully utilized in RNA-Puzzles initiative. The second one, originally applied in Euclidean space, is a component of LGA (Local-Global Alignment) algorithm commonly used in assessing protein models submitted to CASP. This unique combination of concepts implemented in LCS-TA provides a new perspective on structure quality assessment in local and quantitative aspect. A series of computational experiments show the first results of applying our method to comparison of RNA 3D models. LCS-TA can be used for identifying strengths and weaknesses in the prediction of RNA tertiary structures

    Recent Advances in Operations Research in Computational Biology, Bioinformatics and Medicine

    Get PDF
    The EURO Working Group on Operations Research in Computational Biology, Bioinformatics and Medicine held its fourth conference in Poznan-Biedrusko, Poland, June 26–28, 2014. The editorial board of RAIRO-OR invited submissions of papers to a special issue on Recent Advances in Operations Research in Computational Biology, Bioinformatics and Medicine. This special issue includes nine papers that were selected among forty presentations and included in this special issue after two rounds of reviewing
    corecore