29 research outputs found

    Postnatal Survival of Mice with Maternal Duplication of Distal Chromosome 7 Induced by a Igf2/H19 Imprinting Control Region Lacking Insulator Function

    Get PDF
    The misexpressed imprinted genes causing developmental failure of mouse parthenogenones are poorly defined. To obtain further insight, we investigated misexpressions that could cause the pronounced growth deficiency and death of fetuses with maternal duplication of distal chromosome (Chr) 7 (MatDup.dist7). Their small size could involve inactivity of Igf2, encoding a growth factor, with some contribution by over-expression of Cdkn1c, encoding a negative growth regulator. Mice lacking Igf2 expression are usually viable, and MatDup.dist7 death has been attributed to the misexpression of Cdkn1c or other imprinted genes. To examine the role of misexpressions determined by two maternal copies of the Igf2/H19 imprinting control region (ICR)—a chromatin insulator, we introduced a mutant ICR (ICRΔ) into MatDup.dist7 fetuses. This activated Igf2, with correction of H19 expression and other imprinted transcripts expected. Substantial growth enhancement and full postnatal viability was obtained, demonstrating that the aberrant MatDup.dist7 phenotype is highly dependent on the presence of two unmethylated maternal Igf2/H19 ICRs. Activation of Igf2 is likely the predominant correction that rescued growth and viability. Further experiments involved the introduction of a null allele of Cdkn1c to alleviate its over-expression. Results were not consistent with the possibility that this misexpression alone, or in combination with Igf2 inactivity, mediates MatDup.dist7 death. Rather, a network of misexpressions derived from dist7 is probably involved. Our results are consistent with the idea that reduced expression of IGF2 plays a role in the aetiology of the human imprinting-related growth-deficit disorder, Silver-Russell syndrome

    Molecular interactions at the surface of extracellular vesicles

    Get PDF
    Extracellular vesicles such as exosomes, microvesicles, apoptotic bodies, and large oncosomes have been shown to participate in a wide variety of biological processes and are currently under intense investigation in many different fields of biomedicine. One of the key features of extracellular vesicles is that they have relatively large surface compared to their volume. Some extracellular vesicle surface molecules are shared with those of the plasma membrane of the releasing cell, while other molecules are characteristic for extracellular vesicular surfaces. Besides proteins, lipids, glycans, and nucleic acids are also players of extracellular vesicle surface interactions. Being secreted and present in high number in biological samples, collectively extracellular vesicles represent a uniquely large interactive surface area which can establish contacts both with cells and with molecules in the extracellular microenvironment. Here, we provide a brief overview of known components of the extracellular vesicle surface interactome and highlight some already established roles of the extracellular vesicle surface interactions in different biological processes in health and disease

    Sex-Specific Dynamics of Global Chromatin Changes in Fetal Mouse Germ Cells

    No full text
    Mammalian germ cells undergo global reprogramming of DNA methylation during their development. Global DNA demethylation occurs around the time when the primordial germ cells colonize the embryonic gonads and this coincides with dynamic changes in chromatin composition. Global de novo DNA methylation takes place with remarkably different dynamics between the two sexes, prospermatogonia attaining methylation during fetal stages and oocytes attaining methylation postnatally. Our hypothesis was that dynamic changes in chromatin composition may precede or accompany the wave of global DNA de novo methylation as well. We used immunocytochemistry to measure global DNA methylation and chromatin components in male and female mouse fetal germ cells compared to control somatic cells of the gonad. We found that global DNA methylation levels sharply increased in male germ cells at 17.5 days post coitum, but remained low in female germ cells at all fetal stages. Global changes in chromatin composition: i, preceded global DNA methylation in fetal germ cells; ii, sex specifically occurred in male but not in female germ cells; iii, affected active and repressive histone marks and iv, included histone tail and histone globular domain modifications. Our data suggest that dynamic changes of chromatin composition may provide a framework for the pattern of male-specific de novo DNA methylation in prospermatogonia

    Polypeptide and Protein Modeling for Drug Design

    Get PDF
    The main pathways involved in pain processing have been known for some time, but the precise microcircuitry remains surprisingly unclear. This has allowed very different theories of pain processing to persist. Specificity theory holds that pain is qualitatively distinct from other somatosensory percepts and that the underlying circuitry is arranged as labeled lines. Gate control theory holds that all inputs converge and that it is the level of activation in unspecialized neurons that code for pain. The truth lies somewhere in between. The dorsal horn of the spinal cord, which corresponds to the first synaptic relay point, comprises a diverse set of interneurons whose connectivity is only partially worked out. This lack of data has hindered network-level modeling, but this also presents an opportunity for modeling to help guide future experiments
    corecore