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Polypeptide and Protein Modeling for Drug Design 

Encyclopedia of Computational Neuroscience 

 

Synonyms 

Computational modeling, structure-aided drug design, computational structural biology 

 

Definition 

Modeling of polypeptides and proteins, often referred to as biomolecular or molecular modeling, 
encompasses the use of theoretical models and computational methods to model the structure and 
dynamics of molecules of biological interest such as peptides, proteins and small organic molecules 
(ligands).  

The aims of protein and peptide modeling for drug design include: (i) modeling the three-
dimensional structure of proteins of current or potential drug targets; (ii) identifying and 
characterizing the structural dynamics associated with the function of a particular protein or 
peptide; and (iii) predicting the structure and molecular interactions of protein-ligand complexes. 
This knowledge underpins structure-based and rational drug design. It can aid in the design and 
optimization of drug molecules by shedding light on their mode of action, specificity and selectivity.  

 

Detailed Description  

Background 

The number of protein structures solved experimentally and deposited in the Protein Data Bank 
(PDB) has risen exponentially since its inception the 1970’s (RSCB Protein Data Bank). This has 
been accompanied by a rapid growth in computational power and continuous improvements in 
modeling algorithms, greatly enhancing the complexity, size and diversity of the proteins that can 
be simulated. Together, the experimental and computational breakthroughs initiated in the 1970’s 
have contributed enormously to our knowledge of protein structure and structural conservation 
within protein superfamilies. In 2013, the contribution of computational modeling to our 
understanding of protein structure and biochemical function was recognized by the award of the 
Nobel Prize in Chemistry to three of the founders of the field, Martin Karplus, Michael Levitt and 
Arieh Warshel (The Nobel Prize in Chemistry 2013 - Press Release  2013). Computational 
modeling techniques lie at the core of fields such as protein folding and dynamics, structure-based 
drug design and computer-aided drug design. 

The majority of drugs targeting the central nervous system modulate the action of one or more 
neurotransmitters involved in synaptic transmission. Thus the most common drug targets fall into 
the category of cell surface receptors, such as metabotropic and G-coupled protein receptors 
(GPCRs), transporters and ion channels (Cross and Yocca 2012; Hefti 2004; Squire et al. 2008). In 
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fact, drugs targeting GPCRs account for over 50% of all clinical drugs (Schushan and Ben-Tal 
2010). Despite their clinical significance, solving the experimental structure of transmembrane 
proteins remains challenging. In 2013, the PDB contained >94500 structures, of which only 1954 
are transmembrane proteins (RSCB Protein Data Bank  ; Kozma et al. 2013). This gap between the 
availability of structural models and the need for high-resolution structures of membrane proteins is 
a major obstacle in the design of drugs targeted for a specific protein or protein isoform. In many 
cases, both the protein dynamics and the precise details of the drug binding site is unknown, making 
identification of the molecular interactions that govern the specificity of the drug difficult to 
determine. Furthermore, the existence of multiple subtypes or isoforms of many of these proteins, 
each with distinct physiologic functions, makes subtype selectivity crucial for drug efficacy. 
Computational modeling techniques offer a means to understand structure-function relationships of 
these critical proteins.  

 

The underlying principles behind protein and peptide modeling techniques 

Computational modeling is used to address a myriad of question relevant to drug design. Examples 
include predicting the native structure of a protein from its amino acid sequence or from the 
structure of homologues; elucidating the relationship between protein structure and biological 
function; understanding how protein motion is associated with drug binding; determining the 
molecular interactions between a drug and its target protein that govern drug selectivity and 
potency; and understanding how drug binding modulates protein function. The most suitable 
modeling approach for a particular problem depends on the level of structural and biochemical 
information available and the question to be addressed. Figure 1 gives an overview of commonly 
used techniques that will be discussed here. 

Simulation techniques for modeling of proteins, peptides and drugs can be classified into three 
broad categories based on the underlying theory or principle: knowledge or rule based methods; 
potential energy methods; and quantum mechanical methods (Goodfellow 2008). More recent 
approaches combine two or more of these categories to improve the quality of the models obtained 
(Goodfellow 2008). For example, computational approaches that investigate protein dynamics, or 
protein–ligand interactions (such as molecular dynamics and docking techniques) are primarily 
based on potential energy methods, while structure prediction methods often combine an initial 
knowledge-based method with a potential energy method to further refine the model. Methods 
based on a purely quantum mechanical approach are not feasible for molecules of more than 50 
atoms due to current computational limitations. As most proteins and peptides are larger than this, 
quantum mechanical approaches will not be discussed here.  

 

Knowledge based methods 

Knowledge based methods for protein and peptide modeling use comparative statistical analysis to 
predict the structure of the amino acid sequence of the target protein from (i) the sequence of 
homologous proteins of known structure; or (ii) a database of protein structures (Rangwala 2010). 
The accuracy of this approach relies on the current knowledge of protein structures and 
evolutionary relationships.  
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Potential energy methods 

Potential energy (PE) methods, are based on (i) a description of the fundamental parts of the system 
(usually atoms), (ii) a mathematical description of the interactions between the atoms; (iii) a starting 
configuration such as the coordinates of each atom in the system; and (iv) an algorithm to carry out 
the desired computational steps by evolving the system in time and space (Goodfellow 2008; Jensen 
2007) 

Most PE methods used for modeling polypeptides and proteins utilize the so-called molecular 
mechanics (MM) approach in which a system is described as a collection of spheres (representing 
one or more atoms), connected by bonds in the form of harmonic springs. Both the bonded and non-
bonded interactions between all pairs of atoms are described by simple mathematical expressions, 
referred to as the forcefield, the general form of which is described in Eqn. 1: 

  𝐸!"!#$ = 𝐸!"#$ + 𝐸!"#$% + 𝐸!"!!"#$% + 𝐸!"!#$%&'$($)# + 𝐸!"#  !"#  !""#  (1) 

where E is the potential energy. The underlying principle of MM assumes that the potential energy 
of the molecular system can be described as a function of the atom’s position in space. The 
forcefield allows the change of energy in the system to be calculated as the atomic positions change. 
The conformation of a protein or peptide is optimized with respect to its energy, as the assumption 
of the potential energy concept is that the minimization of the potential energy will give the optimal 
geometry of the protein or ligand. MM becomes particularly powerful when combined with 
algorithms that propagate the system in time or space (Jensen 2007; Náray-Szabó et al. 2012; 
Nowak 2012). These algorithms either propagate possible conformations of the protein to sample 
the “conformational space”; or examine how the system evolves over time.  Energy minimization 
and Monte Carlo algorithms are used to propagate the system in conformational space. Energy 
minimization algorithms (also referred to as geometry or energy optimization) calculate the gradient 
of the potential energy and evolve the protein in the direction of the minimum potential energy. 
Monte Carlo algorithms (named after the Monte Carlo casino) rely on repeated random sampling of 
an initial amino acid conformation to find the statistically most probable end state for the given 
initial conditions. These algorithms are particularly important for finding stable, minimum energy 
conformations of a protein, for example, the local and global energy minima in protein folding or 
ligand binding pathways. They cannot give information about the timescales of these processes.  

Langevin (or stochastic) dynamics and molecular dynamics use algorithms to examine the time-
evolution of the system but differ in the underlying equation of motion. Molecular dynamics is 
based on Newton’s equation of motion: 

 𝑚!𝑎! = 𝐹!(𝑟)          (2) 

where mi, ai and Fi(r) are the mass, acceleration and force on the ith atom. Stochastic dynamics is 
based on the Langevin equation:  

 𝑚!𝑎! =   𝐹! 𝑟 −   𝑚!𝛾!(𝑡)   +   𝜂!(𝑡)       (3).  

Here the additional terms, miγi(t) and ηi(t) are the random force and frictional force on the ith atom 
that arise from molecular collisions due to the thermal motion of the atoms. By incorporating these 
forces, Langevin dynamics model the effects of water and other solvents without including them 
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explicitly in the simulations. In contrast to algorithms that propagate the protein system in 
conformational space, algorithms that give the time evolution of the system provide information 
about the dynamics of the system and the timescale at which these occur. One of the major 
limitations of these algorithms is they often evolve to a local energy minima which is stable over 
the timescale (ns to µs) of the simulation. Because of this limitation, time-evolution algorithms 
cannot currently sample the entire range of conformations that a protein system will adopt in a 
physiological environment.  

 

Protein structure prediction 

Homology modeling 

Proteins derived from a common ancestor are homologues and display a conserved amino acid 
sequence and three-dimensional structure. The extent of the sequence and structural conservation 
depends on the evolutionary distance between the homologues. Homology or comparative modeling 
exploits these similarities to construct a structural model of the target protein based on the 
experimental structure of homologue, referred to as the modeling template. Conservation of protein 
folds between homologues guides the modeling, which follows four steps: fold recognition and 
template selection, target-template alignment, model building, and model assessment (Zvelebil and 
Baum 2008). 

The reliability of the homology model is critically dependent on the accuracy of the sequence 
alignment between the homologues and the resolution of the experimental structure of the 
homologue used as the modeling template. Single residue shifts in the alignment of the sequences 
can result in register shifts across large regions of the protein, seriously affecting the predictions of 
binding site residues and ligand coordination (Náray-Szabó et al. 2012; Zvelebil and Baum 2008). 
This is particularly relevant for the structure of transmembrane proteins such as channels, 
transporters and receptors. The general role of these proteins is to selectively allow the passage of a 
hydrophilic or charged moiety across a hydrophobic lipid bilayer. To facilitate this process, 
transmembrane proteins possess highly ordered secondary structures in which the exterior of the 
protein is a hydrophobic shell that shields a substrate-selective hydrophilic core from the lipid 
environment. Most channels and membrane transport proteins are composed of interacting 
α-helices. Here a residue shift of a single amino acid in one helix may alter the prediction of the 
entire interaction interface between two or more helices, and shift the orientation of binding site 
residues within an α-helix by 100º.  

The sequence identity between the target and template proteins gives a limit to the confidence 
placed on the homology of the two proteins. 90% of the proteins with sequence identities of >30% 
are structural homologues, while for pairs of proteins with sequence identities of <20%, less than 
10% were structural homologues (Rost 1999; Zvelebil and Baum 2008). Aligned proteins with 
sequence identities ranging from 30% to 20% represent the transition zone from a high-confidence 
prediction of homology to a low-confidence prediction. This region is referred to as the “twilight 
zone” for homology modeling (Rost 1999). It should be noted that in transmembrane proteins, 
substitutions between hydrophobic residues are generally well tolerated, while the amino acid 
composition of the substrate-selective regions of the protein are tuned for the substrate of interest. 
For this reason, transmembrane proteins from the same family or superfamily often have sequence 
identities that lie within this twilight zone, increasing the possibility of alignment errors in 
homology modeling.  
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Modeling by fold recognition  

In many cases, the three-dimensional structure of a protein is more highly conserved than the amino 
acid sequence. Threading or fold recognition approaches attempt to find a conserved structure that 
is compatible with the sequence of the target protein. The target sequence is “threaded” onto each 
protein in a database of experimentally determined protein structures and a scoring function is used 
to determine which structure best accommodates the target sequence. A high score indicates the 
structure is compatible with the target sequence and it is assumed that the target sequence folds in 
the same manner (Zvelebil and Baum 2008).  

 

Probabilistic modeling of protein interactions 

Molecular Docking Techniques 

In the case of drug–protein, peptide–protein or protein–protein interactions, computational docking 
approaches predict an interaction interface between the protein and ligand, which may represent a 
stable binding mode. Molecular docking essentially involves two steps: (i) generation of a large 
number of possible configurations of the protein-ligand complex (binding poses); and (ii) scoring of 
configurations with the aim to distinguish possible protein-ligand configurations from those not 
physically possible (Xu et al. 2007). A set of example results from a docking simulation is shown in 
Figure 2. 

Docking methods vary significantly in the degree to which they account for the flexibility of the 
protein and the ligand. The majority of docking algorithms implement a rigid body approach, in 
which the internal flexibility of both the protein and the ligand is not considered. More sophisticated 
approaches allow flexibility of the protein side chain or backbone atoms. The choice of method is 
essentially a trade-off between accuracy and speed. Rigid body methods are fast and robust and can 
be applied for virtual screening of a large number of potential ligands, albeit at low accuracy. More 
sophisticated flexible docking methods allow optimization of the protein-ligand complex. These 
methods are much slower, but provide greater accuracy (Xu et al. 2007). Recent data driven 
approaches use experimental information such as NMR chemical shift perturbation or mutagenesis 
data as internal constraints to drive the docking algorithm (Xu et al. 2007). 

 

Scoring functions are used to assess the quality of modeled structures and interactions 

Scoring functions are an important concept used for assessing the quality of structural models 
predicted by either potential energy or knowledge-based methods. Scoring functions are 
approximate mathematical methods that give an empirical score that represents the mathematical 
quality of the model. A favorable score should be interpreted in light of the experimental results. It 
does not necessarily imply that the homology model or docked complex represents the 
physiological state. Instead, it may simply reflect a well-optimized mathematical solution. 

Scoring functions for knowledge-based methods provide a measure of the structural environment of 
the model. Knowledge-based scoring functions are based on mathematical functions that consider 
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inter-residue distances, such as side chain packing and solvation potential; or solvent accessibility 
and the fit of the sequence into a given solvent accessible surface (Zvelebil and Baum 2008). 
Potential energy scoring functions are based on steric fit (or hindrance) of the molecular interactions 
derived from the van der Waals interactions between adjacent atoms, the energetics of the torsional 
angles for the covalent interactions, and electrostatic potential energy of the interaction (Baron et al. 
2012; Náray-Szabó et al. 2012).  

 

Modeling time-dependent protein dynamics 

Molecular Dynamics simulation techniques 

The function of most proteins is intrinsically linked to dynamic structural changes. Classical 
molecular dynamics (MD) simulation techniques have been used to model conformational changes 
of proteins and peptides on ns to µs timescales. While many biologically important conformational 
changes, such as protein folding, occur over longer (µs to ms) timescales, MD simulations are able 
to capture rapidly induced conformational changes, such as those involved in the process of ligand 
binding (10 -500 ns). Recent advances in algorithm and hardware design, or the implementation of 
so-called coarse-grained forcefields have extended the possible simulation times to simulate the 
conformational dynamics of channel gating (500 ns – 5 µs). MD simulations are the most 
computationally intensive of the techniques discussed here. However, they are currently the only 
method (computational or experimental) that characterizes the structural dynamics and molecular 
interactions in atomic detail, while fully accounting for the flexibility of the protein and ligand in a 
physiologically relevant environment. MD simulations provide an accurate method of studying the 
molecular interactions involved in ligand binding; the conformational changes induced in the 
protein or the ligand during the formation of a stable complex; and the correlation of ligand 
orientation and protein conformations (Shirts 2012). 

In general terms, molecular dynamics (MD) is a computer simulation of the dynamics of a set of 
particles that are under the influence of a physical force, described by classical physics (Alder and 
Wainwright 1959; Rahman 1964). Historically, MD simulations have been widely applied to 
problems involving a potential energy field, such as the gravitational potentials of astrophysics and 
cosmology (von Hoerner 1963, 1960; Rahman 1964). In the 1970’s, MD simulations were first 
coupled to molecular mechanics (MM) forcefields to investigate protein dynamics.  

In MD simulations of biomolecular systems, Newtonian mechanics is used to generate a series of 
time-dependent conformations of the protein system from a starting conformation (usually an 
experimentally determined structure) and a set of initial velocities. The potential energy of the 
system is described as a function of the atoms’ position using a molecular mechanics (MM) 
forcefield. The change in energy and the forces acting on each atom are calculated at each step in 
the simulation. The time-dependent structural, dynamic and thermodynamic properties of the 
system can be calculated from the MD trajectories. As discussed earlier, one major limitation of 
classical MD is the limited sampling of the conformational space of the protein (or protein–ligand) 
system due to time-dependent trapping in local potential energy minima. Since the 1990s a number 
of enhanced sampling methods have been developed to address these limitations (Lorenz and 
Doltsinis 2012; Náray-Szabó et al. 2012; Nowak 2012). 
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Free energy calculations 

One powerful application of MD simulation techniques is the estimation of the change in free 
energy on the binding of a drug to its target protein. This can, in principle, be directly related to the 
experimentally determined binding affinity. A series of methods have been developed to effectively 
sample the intermediate states in the transition between the ligand free in solution and the formation 
of the protein-ligand complex. The two most commonly used methods are free energy perturbation 
(FEP) and thermodynamic integration (TI). In FEP, the difference in energy between the dissociated 
ligand in solution and the ligand-bound complex is used to derive a thermodynamic cycle from 
which the binding free energy of the ligand can be calculated. In TI, the free energy difference is 
determined by defining a thermodynamic path between the bound and free state of the ligand. The 
path chosen is a simplified (mostly one-dimensional) version of the true diffusive path of the ligand 
binding to the protein.  

The two methods have different applications. FEP methods are generally applied to small ligands or 
drugs with buried binding sites. However, highly charged ligands can be problematic due to their 
large solvation free energies. TI methods are more applicable for drugs or ligands that have a 
surface-accessible binding mode or binding site (Gumbart et al. 2012; Jensen 2007; Shirts 2012). 
Independent of the method used, the task of accurately predicting the absolute binding free energies 
remains “a daunting computational endeavor” (Gumbart et al. 2012) and are among the most 
challenging types of biomolecular simulations (Shirts 2012).  

 

Current successes and future directions 

The field of rational or computer-aided drug design is built on the premise that knowing the 
molecular structure and dynamics of a ligand-binding site will enable the design of an optimized 
ligand molecule that can act as a more effective drug. Structural knowledge of the protein of interest 
and its dynamics is an essential pre-requisite. For the majority of drug targets, the structure and 
dynamics of the human protein is unknown. As experimental and modeling techniques improve, 
highly specific clinical drugs with minimal cross-reactivity (and side effects) are becoming a reality. 
The carbonic anhydrase inhibitor and anti-glaucoma drug dorzolamide was the first drug approved 
for clinical use that was developed by computer-aided drug design. This was rapidly followed by 
HIV protease inhibitors (De Lucca et al. 1997; Greer et al. 1994) and the cancer chemotherapeutic 
agent and tyrosine kinase inhibitor, imatinib (gleevec) (Druker and Lydon 2000). Current drugs 
developed by computer-aided drug design target 5-HT3 and acetylcholine receptor agonists, G-
protein coupled receptors such as CCR5 and NK1, proton pumps and TRP channels.  

 

Summary 

As computational power and modeling algorithms continue to improve, computational modeling is 
becoming an increasingly important investigative tool. As our experimental knowledge of protein 
structure increases, so too does the application of computational modeling in elucidating the 
molecular details of drug binding and the mechanism by which drugs modulate protein structure 
and function.  
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Figure legends 

 

Figure 1. An overview of the main techniques used to model proteins and peptides for drug design. 
The main aims of these techniques is to (i) model the three-dimensional structure of proteins of 
current or potential drug targets; (ii) identifying and characterizing the structural dynamics 
associated with the function of a particular protein or peptide; and (iii) predicting the structure and 
molecular interactions of protein-ligand complexes. In the absence of an experimentally determined 
protein structure, homology modeling techniques can be used to predict the structure of a given 
protein from the sequence similarity to homologues of known structure. Docking simulations can be 
used to predict the interaction of drugs, ligands or other proteins with the protein of interest. From a 
high-resolution experimentally determined protein structure, the conformational dynamics within 
the protein and dynamic binding of drug molecules can be elucidated using molecular dynamics 
simulation techniques.  

 

Figure 2. Molecular docking conformations of protein-protein and protein-ligand docking 
simulations. Multiple poses of A) a pseudokinase domain (colored from orange to red) docked onto 
a kinase domain (blue); and B) an inhibitor molecule (CPK coloring, licorice) docked onto a 
homology model of a human homologue of LeuT (grey ribbons). Note the extended loops in the 
model correspond to amino acid insertions not present in the LeuT structure.  
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