40 research outputs found

    Új dimenziók a genomszerkezet kutatásban

    Get PDF

    The genome loading model for the origin and maintenance of sex in eukaryotes

    Get PDF
    Understanding why sexual reproduction—which involves syngamy (union of gametes) and meiosis—emerged and how it has subsisted for millions of years remains a fundamental problem in biology. Considered as the essence of sex, meiotic recombination is initiated by a DNA double-strand break (DSB) that forms on one of the pairing homologous chromosomes. This DNA lesion is subsequently repaired by gene conversion, the non-reciprocal transfer of genetic information from the intact homolog. A major issue is which of the pairing homologs undergoes DSB formation. Accumulating evidence shows that chromosomal sites where the pairing homologs locally differ in size, i.e., are heterozygous for an insertion or deletion, often display disparity in gene conversion. Biased conversion tends to duplicate insertions and lose deletions. This suggests that DSB is preferentially formed on the “shorter” homologous region, which thereby acts as the recipient for DNA transfer. Thus, sex primarily functions as a genome (re)loading mechanism. It ensures the restoration of formerly lost DNA sequences (deletions) and allows the efficient copying and, mainly in eukaryotes, subsequent spreading of newly emerged sequences (insertions) arising initially in an individual genome, even if they confer no advantage to the host. In this way, sex simultaneously repairs deletions and increases genetic variability underlying adaptation. The model explains a remarkable increase in DNA content during the evolution of eukaryotic genomes

    Two Targets , One Hit : new Anticancer Therapeutics to Prevent Tumorigenesis Without Cardiotoxicity

    Get PDF
    A serious adverse effect of cancer therapies is cardiovascular toxicity, which significantly limits the widespread use of antineoplastic agents. The promising new field of cardio-oncology offers the identification of potent anti-cancer therapeutics that effectively inhibit cancer cell proliferation without causing cardiotoxicity. Future introduction of recently identified cardio-safe compounds into clinical practice (including ERK dimerization inhibitors or BAX allosteric inhibitors) is expected to help oncologists avoid unwanted cardiological complications associated with therapeutic interventions

    Concurrence of chromosome 3 and 4 aberrations in human uveal melanoma

    Get PDF
    Uveal melanoma (UM) is the most common primary intraocular malignancy with a very poor prognosis. The most frequent chromosome aberration in UM is the monosomy of chromosome 3. Previously, we demonstrated that ~50% of UMs express type-I receptor for luteinizing hormone-releasing hormone (LH-RH-R). The gene encoding LH-RH-R is located in chromosome 4 (location: 4q21.2); however, the occurrence of numerical aberrations of chromosome 4 have never been studied in UM. In the present study, we investigated the abnormalities of chromosome 3 and 4, and the possible correlation between them, as well as with LH-RH-R expression. Forty-six specimens of UM were obtained after enucleation. Numerical aberrations of chromosome 3 and 4 were studied by fluorescence in situ hybridization (FISH). Chromosome 4 was detected in normal biparental disomy only in 14 (30%) samples; however, 32 cases (70%) showed more than 2 signals/nucleus. Monosomy of chromosome 3 could be found in 16 (35%) samples. In 6 specimens (13%), more than 2 copies of chromosome 3 were found, while normal biparental disomy was detected in 24 (52%) samples. Statistical analysis indicated a statistically significant (p<0.05) correlation between the copy number of chromosome 3 and 4. Moreover, moderate difference was revealed in the survival rate of the UM patients with various pathological profiles. No correlation was found between chromosome aberrations and LH-RH-R expression. Our results clearly demonstrate abnormalities in chromosome 3 and 4 and the incidence of the monosomy of chromosome 3 in human UM. In summary, our results provide new incite concerning the genetic background of this tumor. Our findings could contribute to a more precise determination of the prognosis of human UM and to the development of new therapeutic approaches to this malignancy

    Coding and Noncoding Transcriptomes of NODULIN HOMEOBOX (NDX)-Deficient Arabidopsis Inflorescence

    Get PDF
    Arabidopsis NODULIN HOMEOBOX (NDX) is a plant-specific transcriptional regulator whose role in small RNA biogenesis and heterochromatin homeostasis has recently been described. Here we extend our previous transcriptomic analysis to the flowering stage of development. We performed mRNA-seq and small RNA-seq measurements on inflorescence samples of wild-type and ndx1-4 mutant (WiscDsLox344A04) Arabidopsis plants. We identified specific groups of differentially expressed genes and noncoding heterochromatic siRNA (hetsiRNA) loci/regions whose transcriptional activity was significantly changed in the absence of NDX. In addition, data obtained from inflorescence were compared with seedling transcriptomics data, which revealed development-specific changes in gene expression profiles. Overall, we provide a comprehensive data source on the coding and noncoding transcriptomes of NDX-deficient Arabidopsis flowers to serve as a basis for further research on NDX function

    NODULIN HOMEOBOX is required for heterochromatin homeostasis in Arabidopsis

    Get PDF
    Arabidopsis NODULIN HOMEOBOX (NDX) is a nuclear protein described as a regulator of specific euchromatic genes within transcriptionally active chro- mosome arms. Here we show that NDX is primarily a heterochromatin reg- ulator that functions in pericentromeric regions to control siRNA production and non-CG methylation. Most NDX binding sites coincide with pericen- tromeric het-siRNA loci that mediate transposon silencing, and are antag- onistic with R-loop structures that are prevalent in euchromatic chromosomal arms. Inactivation of NDX leads to differential siRNA accumulation and DNA methylation, of which CHH/CHG hypomethylation colocalizes with NDX binding sites. Hi-C analysis shows significant chromatin structural changes in the ndx mutant, with decreased intrachromosomal interactions at pericen- tromeres where NDX is enriched in wild-type plants, and increased inter- chromosomal contacts between KNOT-forming regions, similar to those observed in DNA methylation mutants. We conclude that NDX is a key reg- ulator of heterochromatin that is functionally coupled to het-siRNA loci and non-CG DNA methylation pathways
    corecore