5 research outputs found
Introduction of hydrogen into titanium by plasma methods
The introduction of hydrogen into titanium VT1-0 by the methods of plasma-immersion ion implantation (PIII) from the hydrogen plasma of a source with a heated cathode and into high-frequency discharge (HFD) plasma was studied. Modes of installations for introduction are chosen proceeding from the requirement of the maximum content of hydrogen in the samples. It is established that saturation from the HFD-plasma leads to a significant enrichment to a depth of 1.2 µm, at the introduction of hydrogen by the PIII this depth is 0.6 µm. The hydrogen content of 0.06 wt.% in the samples after saturation in the HFD plasma, and 0.049 wt.% after PIII. During PIIII (with an energy of 0.9-1.5 keV), hydrogen is strongly scattered by the surface of the sample and is captured predominantly by surface defects (including those created by the ions themselves), as well as by vacancies in the near-surface layers. Upon saturation from the HFD-plasma, hydrogen diffuses into the interior of the sample and settles in interstices and at grain boundaries. At the same time, saturation from the HFD plasma and PIII lead to significant change in the crystal parameters and the creation of hydride phases
Effect of nonequilibrium hydrogen release in the ultrafine-grained Zr-1Nb alloy under the electron beam exposure
The evolution of structural and phase state and hydrogen release from the ultrafine-grained hydrogenated zirconium Zr-1Nb alloy during vacuum annealing and electron beams exposure were studied. The use of electron beam irradiation for hydrogen degassing is shown to decrease the temperature of active hydrogen release by 100-200 K and/or reduce the time required for hydrogen degassing from the alloy to concentrations corresponding to technical standards
Влияние времени выдерживания в водородной атмосфере системы Ti/Al2O3 на сорбцию водорода, адгезию, трибологию и электропроводимость пленки
This paper reports results on the interaction between an aluminum oxide film, deposited on technically pure titanium of grade VT1-0 by the magnetron reactive sputtering method, and a hydrogen-containing atmosphere. Such a study is important in order to find protective coatings that would prevent the penetration of hydrogen inside a product. A given system aged in a hydrogen atmosphere in the interval of 1‒4 hours at a pressure of 2∙105 Pa (2 bar) and a temperature of 400 °C. We have acquired data on the distribution of hydrogen along a film thickness and its content in a thin-film system. It is shown that hydrogen diffuses into the film and builds up in it up to three hours, and only then it begins to penetrate the substrate. We have managed to increase aging duration in a hydrogen-containing environment and increase the temperature of heating up to the stage of film destruction. In the case of the starting film and after aging from 1 to 3 hours the adhesion force between a film and a substrate increases, apparently due to the formation of hydrogen bonds film-substrate. The adsorption of hydrogen atoms at the surface of the Al2О3 film is accompanied by an increase in its conductivity by not larger than 4 % with the increased time of aging. Such a change in the conductivity of the Al2О3 film can be explained based on the formation of a zone structure. Thin oxide films may possess continuous one-side conductivity, but in the case the film is thick (0.5 µm and above), it is not possible to argue about the one-side conductivity. The data acquired on the influence of aging duration in a hydrogen atmosphere indicate an increase in adhesive strength by almost 6 times within 3 hours and by 2.5 times in 4 hours. The determined coefficient of film friction increases by not larger than 2.5 times. By measuring the electrical conductivity of the film surface, it was found that it increases with an increase in the time of aging in a hydrogen atmosphere. This pattern is obviously linked to the creation of transitions of the p-n-type in the film of aluminum oxide at the expense of hydrogen ions Представлены результаты по взаимодействию пленки оксида алюминия, нанесенной на технически чистый титан марки ВТ1-0 методом магнетронного реактивного напыления, с водород содержащей атмосферой. Необходимость проведения таких исследований заключается в поиске защитных покрытий, препятствующих проникновению водорода в изделие. Данная система выдерживалась в водородной атмосфере в интервале от 1–4 часов, при давлении 2•105 Па (2 атм) и температуре Т=400 °С. Получены данные по распределению водорода по толщине пленки и его содержанию в тонкопленочной системе. Показано, что водород проникает в пленку и накапливается в ней вплоть до трех часов, и лишь после начинает проникать в подложку. Удалось увеличить время выдержки в водород содержащей среде и увеличить температура нагревания до стадии разрушения пленки. В случае исходной пленки и после выдержки в течение от 1 до 3 часов сила сцепления пленки с подложкой возрастает, очевидно, за счет образования водородных связей пленка-подложка. Адсорбция атомов водорода на поверхности пленки Al2О3 сопровождается увеличением ее проводимости не более чем на 4 % и с увеличением времени выдержки. Такое изменение проводимости пленки Al2O3 может быть объяснено на основании образования зонной структуры. Тонкие оксидные пленки могут обладать сплошной односторонней проводимостью, в случае же если пленка толстая (от 0,5 мкм и выше), то говорить об однородной проводимости нельзя. Полученные данные по влиянию времени выдержки в водородной атмосфере указывают на увеличение адгезионной прочности почти до 6 раз в течение 3-х часов и 2,5 раз после 4 часов. Определенный коэффициент трения пленки возрастает не более чем в 2,5 раза. Измеряя электропроводность поверхности пленки, было обнаружено, что она возрастает по мере увеличения времени выдержки в водородной атмосфере. Такая закономерность очевидно связана с созданием переходов р-n-типа в пленке оксида алюминия за счет ионов водород
Method of fluorescent control of plasma structure and treated surface in technique of downhole equipment anticorrosion protection
Актуальность. Надежность и целостность нефтедобывающего оборудования, сроки его эксплуатации обеспечиваются комплексом мер по борьбе с коррозией, в частности использованием технологий газопламенного напыления защитных покрытий на проектируемые или восстанавливаемые детали. В данных технологиях эффективным методом контроля за состоянием состава плазмы и качества напыляемой поверхности может служить явление гетерогенной хемилюминесценции. Гетерогенные хемилюминесцентные реакции обладают селективностью и высокой чувствительностью к типу поверхности и сорту возбуждающего газа. Использование оптических методов для изучения, контроля и управления в неравновесных системах газ–твердое тело открывает новые аналитические и аппаратурные возможности в физике поверхности, химии, плазмохимии, технологии полупроводников и люминофоров, в решении экологических проблем. Изучение процессов адсорбции–десорбции, диссоциации, диффузии, рекомбинации газовых частиц, дефектообразования и роста кристаллической решетки с использованием явления гетерогенной хемилюминесценции является актуальной задачей физики конденсированного состояния. Поскольку явление гетерогенной хемилюминесценции реализует возможности осуществления селективных экспресс-методов анализа при простом аппаратурном оснащении с пределом обнаружения свободных атомов, радикалов, примесей в газовой фазе и в составе поверхностных слоев конденсированных сред до 10–6 % (мол). Цель: исследование процессов в неравновесных системах газ – твердое тело и определение параметров этого взаимодействия на основе регистрации характеристик гетерогенной хемилюминесценции; разработка нестационарных методов определения параметров взаимодействия газ–твердое тело с использованием явления гетерогенной хемилюминесценции, контроль параметров газовой среды и состояния поверхности конденсированных сред. Объекты: атомно-молекулярные пучки водорода, кристаллофосфор ZnS–Mn2+, приповерхностные области взаимодействия газ – твердое тело. Методы: методы, основанные на явлении гетерогенной хемилюминесценции в атомарном водороде для определения скоростей адсорбции и рекомбинации атомов Н, десорбции молекул H2, энергии активации десорбции молекул водорода с поверхности ZnS–Mn2+. Методом «темновой» паузы определена скорость рекомбинации адсорбированных атомов водорода по механизму Лэнгмюра–Хиншелвуда. Результаты. Выполнено сравнительное исследование люминесценции ZnS–Mn2+ при возбуждении светом (фотолюминесценции) и атомарным водородом (гетерогенной хемилюминесценции). Изучены спектрально-кинетические характеристики люминесценции. Установлены механизмы и параметры взаимодействия атомов водорода с поверхностью сульфида цинка (сечения, частотные факторы, энергии активации) с использованием спектрально-кинетических характеристик гетерогенной хемилюминесценции. Показано, что люминофор ZnS–Mn2+ может служить экспресс датчиком восстановительной компоненты плазмы (водород). Явление гетерогенной хемилюминесценции составляет основу оперативных методов контроля начальных стадий модификации поверхности твердых тел в процессах пучково-плазменной обработки материалов.Relevance. Reliability and integrity of oil production equipment, its operation time are provided by a set of measures to combat corrosion, in particular, to use gas-plasma sputtering of protective coatings on designed or restored technology parts. In these technologies, the heterogeneous chemiluminescence phenomenon can serve as an effective method for monitoring plasma composition state and the sputtered surface quality. Heterogeneous chemiluminescence reactions has selectivity and high sensitivity to surface type and excitation gas grade. The use of optical methods to study and control in non-equilibrium gas-solid systems opens up new analytical possibilities in surface physics, chemistry, plasma chemistry, semiconductor and phosphor technology, and in solving environmental problems. Study of adsorption, desorption, dissociation, diffusion, gas particles recombination, defect formation and crystal lattice growth using heterogeneous chemiluminescence phenomenon is an urgent task in condensed matter physics, as the heterogeneous chemiluminescence phenomenon realizes the possibility of selective rapid analysis methods with simple hardware equipment at detection limit of free atoms, radicals, impurities in gas phase and the surface layers composition condensed matter to 10-6 % (mol). The main aim of the research is to study the processes in non-equilibrium systems gas-solid and to determine the interaction based on the registration of characteristics of heterogeneous chemiluminescence; to develop the methods for determining time-dependent interaction parameters of gas-solid using heterogeneous chemiluminescence phenomenon, to monitor the parameters of gaseous medium and the state of condensed matter surface. Objects: atomic-molecular hydrogen beams, crystalline phosphorus ZnS-Mn2+ , near-surface gas-solid interaction regions. Methods: methods based on heterogeneous chemiluminescence phenomenon in atomic hydrogen for determining adsorption rate and H atoms recombination, H2 molecules desorption rate, heat of hydrogen atoms desorption from ZnS-Mn2 + surface. Using the «dark» pause method, the recombination rate of adsorbed atoms was obtained by the Langmuir-Hinshelwood mechanism. Results. The authors have carried out the comparative study of ZnS-Mn2 + luminescence upon light (photoluminescence) and atomic hydrogen (heterogeneous chemiluminescence) excitation. Spectral-kinetic characteristics of luminescence were studied and mechanisms and parameters of interaction of hydrogen atoms with zinc sulfide surface (cross sections, frequency factors, activation energies) based on the kinetic characteristics of heterogeneous chemiluminescence were determined. It is shown that the ZnSCMn2+ phosphor can serve as an express sensor reducing plasma component (hydrogen). Heterogeneous chemiluminescence phenomenon is an effective method to control the initial step of modification and composition of solids surface in beam-plasma treatment of materials