2,753 research outputs found

    Aspiration of biological viscoelastic drops

    Full text link
    Spherical cellular aggregates are in vitro systems to study the physical and biophysical properties of tissues. We present a novel approach to characterize the mechanical properties of cellular aggregates using micropipette aspiration technique. We observe an aspiration in two distinct regimes, a fast elastic deformation followed by a viscous flow. We develop a model based on this viscoelastic behavior to deduce the surface tension, viscosity, and elastic modulus. A major result is the increase of the surface tension with the applied force, interpreted as an effect of cellular mechanosensing.Comment: 4 pages, 4 figures

    Atypical Scrapie Isolates Involve a Uniform Prion Species with a Complex Molecular Signature

    Get PDF
    The pathobiology of atypical scrapie, a prion disease affecting sheep and goats, is still poorly understood. In a previous study, we demonstrated that atypical scrapie affecting small ruminants in Switzerland differs in the neuroanatomical distribution of the pathological prion protein (PrPd). To investigate whether these differences depend on host-related vs. pathogen-related factors, we transmitted atypical scrapie to transgenic mice over-expressing the ovine prion protein (tg338). The clinical, neuropathological, and molecular phenotype of tg338 mice is similar between mice carrying the Swiss atypical scrapie isolates and the Nor98, an atypical scrapie isolate from Norway. Together with published data, our results suggest that atypical scrapie is caused by a uniform type of prion, and that the observed phenotypic differences in small ruminants are likely host-dependant. Strikingly, by using a refined SDS-PAGE technique, we established that the prominent proteinase K-resistant prion protein fragment in atypical scrapie consists of two separate, unglycosylated peptides with molecular masses of roughly 5 and 8 kDa. These findings show similarities to those for other prion diseases in animals and humans, and lay the groundwork for future comparative research

    The contribution of processing fluency to preference : a comparison with familiarity-based recognition

    Full text link
    There is a great deal of evidence supporting the idea that, when a stimulus is processed fluently, it is more likely to be judged as pleasant. However, this influence of fluency on preference judgement seems to depend on several experimental conditions. So we tried to better understand these conditions via a comparison with recognition and by manipulating some aspects of the procedure (test format) and material (similarity and figure-ground contrast of the stimuli). Two experiments showed that some conditions maximally induce the use of processing fluency in a preference judgement, as in a recognition task. We discuss the implications of these findings for the well-documented discrepancy-attribution hypothesis (WhittleseaPeer reviewe

    Characterization of spindle checkpoint kinase Mps1 reveals domain with functional and structural similarities to tetratricopeptide repeat motifs of Bub1 and BubR1 checkpoint kinases.

    Get PDF
    Kinetochore targeting of the mitotic kinases Bub1, BubR1, and Mps1 has been implicated in efficient execution of their functions in the spindle checkpoint, the self-monitoring system of the eukaryotic cell cycle that ensures chromosome segregation occurs with high fidelity. In all three kinases, kinetochore docking is mediated by the N-terminal region of the protein. Deletions within this region result in checkpoint failure and chromosome segregation defects. Here, we use an interdisciplinary approach that includes biophysical, biochemical, cell biological, and bioinformatics methods to study the N-terminal region of human Mps1. We report the identification of a tandem repeat of the tetratricopeptide repeat (TPR) motif in the N-terminal kinetochore binding region of Mps1, with close homology to the tandem TPR motif of Bub1 and BubR1. Phylogenetic analysis indicates that TPR Mps1 was acquired after the split between deutorostomes and protostomes, as it is distinguishable in chordates and echinoderms. Overexpression of TPR Mps1 resulted in decreased efficiency of both chromosome alignment and mitotic arrest, likely through displacement of endogenous Mps1 from the kinetochore and decreased Mps1 catalytic activity. Taken together, our multidisciplinary strategy provides new insights into the evolution, structural organization, and function of Mps1 N-terminal region

    Solvent contribution to the stability of a physical gel characterized by quasi-elastic neutron scattering

    Full text link
    The dynamics of a physical gel, namely the Low Molecular Mass Organic Gelator {\textit Methyl-4,6-O-benzylidene-α\alpha -D-mannopyranoside (α\alpha-manno)} in water and toluene are probed by neutron scattering. Using high gelator concentrations, we were able to determine, on a timescale from a few ps to 1 ns, the number of solvent molecules that are immobilised by the rigid network formed by the gelators. We found that only few toluene molecules per gelator participate to the network which is formed by hydrogen bonding between the gelators' sugar moieties. In water, however, the interactions leading to the gel formations are weaker, involving dipolar, hydrophobic or ππ\pi-\pi interactions and hydrogen bonds are formed between the gelators and the surrounding water. Therefore, around 10 to 14 water molecules per gelator are immobilised by the presence of the network. This study shows that neutron scattering can give valuable information about the behaviour of solvent confined in a molecular gel.Comment: Langmuir (2015

    Polymorphic evolution sequence and evolutionary branching

    Get PDF
    We are interested in the study of models describing the evolution of a polymorphic population with mutation and selection in the specific scales of the biological framework of adaptive dynamics. The population size is assumed to be large and the mutation rate small. We prove that under a good combination of these two scales, the population process is approximated in the long time scale of mutations by a Markov pure jump process describing the successive trait equilibria of the population. This process, which generalizes the so-called trait substitution sequence, is called polymorphic evolution sequence. Then we introduce a scaling of the size of mutations and we study the polymorphic evolution sequence in the limit of small mutations. From this study in the neighborhood of evolutionary singularities, we obtain a full mathematical justification of a heuristic criterion for the phenomenon of evolutionary branching. To this end we finely analyze the asymptotic behavior of 3-dimensional competitive Lotka-Volterra systems

    Grain Boundaries in Graphene on SiC(0001ˉ\bar{1}) Substrate

    Full text link
    Grain boundaries in epitaxial graphene on the SiC(0001ˉ\bar{1}) substrate are studied using scanning tunneling microscopy and spectroscopy. All investigated small-angle grain boundaries show pronounced out-of-plane buckling induced by the strain fields of constituent dislocations. The ensemble of observations allows to determine the critical misorientation angle of buckling transition θc=19± 2\theta_c = 19 \pm~2^\circ. Periodic structures are found among the flat large-angle grain boundaries. In particular, the observed θ=33±2\theta = 33\pm2^\circ highly ordered grain boundary is assigned to the previously proposed lowest formation energy structural motif composed of a continuous chain of edge-sharing alternating pentagons and heptagons. This periodic grain boundary defect is predicted to exhibit strong valley filtering of charge carriers thus promising the practical realization of all-electric valleytronic devices

    Electrodynamics of a Clean Vortex Lattice

    Full text link
    We report on a microscopic evaluation of electrodynamic response for the vortex lattice state of a model s-wave superconductor. Our calculation accounts self-consistently for both quasiparticle and order parameter response and establishes the collective nature of linear response in the clean limit. We discuss the effects of homogeneous and inhomogeneous pinning on the optical conductivity and the penetration depth, and comment on the relationship between macroscopic and local penetration depths. We find unexpected relationships between pinning arrangements and conductivity due to the strongly non-local response.Comment: 4 pages, 2 figure
    corecore