3 research outputs found

    In Vitro Activities of Telithromycin, Linezolid, and Quinupristin-Dalfopristin against Streptococcus pneumoniae with Macrolide Resistance Due to Ribosomal Mutations

    No full text
    To date, 86 of 7,746 macrolide-resistant Streptococcus pneumoniae isolates from 1999 to 2002 PROTEKT (Prospective Resistant Organism Tracking and Epidemiology for the Ketolide Telithromycin) surveillance studies were negative for methylase and efflux mechanisms. Mutations in 23S rRNA or the genes encoding riboprotein L4 or L22 were found in 77 of 86 isolates. Six isolates were resistant to quinupristin-dalfopristin and two were resistant to linezolid, while telithromycin demonstrated good activities against all isolates

    Molecular Epidemiology of Multiresistant Streptococcus pneumoniae with Both erm(B)- and mef(A)-Mediated Macrolide Resistance

    No full text
    Of a total of 1,043 macrolide-resistant Streptococcus pneumoniae isolates collected from 24 countries as part of PROTEKT 1999-2000, 71 isolates tested positive for both the mef(A) and erm(B) genes. Of 69 isolates subjected to further molecular investigations, all were resistant to tetracycline, 63 (91.3%) were resistant to penicillin, and 57 (82.6%) were resistant to trimethoprim-sulfamethoxazole. One isolate was also fluoroquinolone resistant, and another was resistant to quinupristin-dalfopristin. The ketolide telithromycin retained activity against all of the isolates. Of the 69 of these 71 isolates viable for further testing, 46 were from South Korea, 13 were from the United States, 8 came from Japan, and 1 each came from Mexico and Hungary. One major clonal complex (59 [85.5%] of 69 isolates) was identified by serotyping (with 85.5% of the isolates being 19A or 19F), pulsed-field gel electrophoresis, and multilocus sequence typing. The remaining isolates were less clonal in nature. Representative isolates were shown to carry the mobile genetic elements Tn1545 and mega, were negative for Tn1207.1, had tetracycline resistance mediated by tet(M), and contained the mef(E) variant of mef(A). All isolates were positive for mel, a homologue of the msr(A) efflux gene. These clones are obviously very efficient at global dissemination, and hence it will be very important to monitor their progress through continued surveillance. Telithromycin demonstrated high levels of activity (MIC for 90% of the strains tested, 0.5 μg/ml; MIC range, 0.06 to 1 μg/ml) against all isolates

    Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes

    Get PDF
    TNFRSF13B encodes transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), a B cell– specific tumor necrosis factor (TNF) receptor superfamily member. Both biallelic and monoallelic TNFRSF13B mutations were identified in patients with common variable immunodeficiency disorders. The genetic complexity and variable clinical presentation of TACI deficiency prompted us to evaluate the genetic, immunologic, and clinical condition in 50 individuals with TNFRSF13B alterations, following screening of 564 unrelated patients with hypogammaglobulinemia. We identified 13 new sequence variants. The most frequent TNFRSF13B variants (C104R and A181E; n = 39; 6.9%) were also present in a heterozygous state in 2% of 675 controls. All patients with biallelic mutations had hypogammaglobulinemia and nearly all showed impaired binding to a proliferation-inducing ligand (APRIL). However, the majority (n = 41; 82%) of the pa-tients carried monoallelic changes in TNFRSF13B. Presence of a heterozygous mutation was associated with antibody deficiency (P <.001, relative risk 3.6). Heterozygosity for the most common mutation, C104R, was associated with disease (P < .001, relative risk 4.2). Furthermore, heterozygosity for C104R was associated with low numbers of IgD−CD27+ B cells (P = .019), benign lymphoproliferation (P < .001), and autoimmune complications (P = .001). These associations indicate that C104R heterozygosity increases the risk for common variable immunodeficiency disorders and influences clinical presentation
    corecore