45 research outputs found

    Quantitative Proteomic Approach Reveals Altered Metabolic Pathways in Response to the Inhibition of Lysine Deacetylases in A549 Cells under Normoxia and Hypoxia.

    Get PDF
    Growing evidence is showing that acetylation plays an essential role in cancer, but studies on the impact of KDAC inhibition (KDACi) on the metabolic profile are still in their infancy. Here, we analyzed, by using an iTRAQ-based quantitative proteomics approach, the changes in the proteome of KRAS-mutated non-small cell lung cancer (NSCLC) A549 cells in response to trichostatin-A (TSA) and nicotinamide (NAM) under normoxia and hypoxia. Part of this response was further validated by molecular and biochemical analyses and correlated with the proliferation rates, apoptotic cell death, and activation of ROS scavenging mechanisms in opposition to the ROS production. Despite the differences among the KDAC inhibitors, up-regulation of glycolysis, TCA cycle, oxidative phosphorylation and fatty acid synthesis emerged as a common metabolic response underlying KDACi. We also observed that some of the KDACi effects at metabolic levels are enhanced under hypoxia. Furthermore, we used a drug repositioning machine learning approach to list candidate metabolic therapeutic agents for KRAS mutated NSCLC. Together, these results allow us to better understand the metabolic regulations underlying KDACi in NSCLC, taking into account the microenvironment of tumors related to hypoxia, and bring new insights for the future rational design of new therapies

    Freezing of Enkephalinergic Functions by Multiple Noxious Foci: A Source of Pain Sensitization?

    Get PDF
    BACKGROUND:The functional significance of proenkephalin systems in processing pain remains an open question and indeed is puzzling. For example, a noxious mechanical stimulus does not alter the release of Met-enkephalin-like material (MELM) from segments of the spinal cord related to the stimulated area of the body, but does increase its release from other segments. METHODOLOGY/PRINCIPAL FINDINGS:Here we show that, in the rat, a noxious mechanical stimulus applied to either the right or the left hind paw elicits a marked increase of MELM release during perifusion of either the whole spinal cord or the cervico-trigeminal area. However, these stimulatory effects were not additive and indeed, disappeared completely when the right and left paws were stimulated simultaneously. CONCLUSION/SIGNIFICANCE:We have concluded that in addition to the concept of a diffuse control of the transmission of nociceptive signals through the dorsal horn, there is a diffuse control of the modulation of this transmission. The "freezing" of Met-enkephalinergic functions represents a potential source of central sensitization in the spinal cord, notably in clinical situations involving multiple painful foci, e.g. cancer with metastases, poly-traumatism or rheumatoid arthritis

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Des propriétés de transport des nanotubes de carbone au transistor (étude par simulation Monte Carlo)

    No full text
    Pour continuer la course à la miniaturisation des composants microélectronique, les nanotubes de carbone (NTC) se présentent comme une alternative potentielle au Silicium en tant que canal de conduction dans les transistors à effet de champ (CNTFET). Afin de comprendre le fonctionnement du CNTFET, ce travail présente un ensemble de simulations physiques de type Monte-Carlo permettant une description fine du transport de charges. Ce travail est basé sur le simulateur particulaire MONACO qui a été adapté aux propriétés spécifiques des NTC. Il commence par une étude détaillée du transport électronique dans les NTC semi-conducteurs mono-feuillet. L importance des différents mécanismes d interaction électron-phonon et leur impact sur les propriétés de transport sont plus particulièrement analysés. Les libres parcours moyens obtenus sont dépendants du champ électrique : suivant les phonons dominants: ils sont supérieurs à 100 nm à faible champ et inférieurs à 20 nm à fort champ. La simulation d un CNTFET à grille cylindrique et à contacts ohmiques est ensuite proposée en vu de dimensionner le transistor pour des applications numériques et analogiques. L influence du contrôle électrostatique, du transport balistique et de la capacité quantique sur le fonctionnement et les performances du transistor est analysée et validée par des travaux expérimentaux. Enfin, les performances dynamiques du transistor à nanotube sont évaluées à partir de facteurs de mérite pertinents définis, d une part, pour des applications numériques et, d autre part, pour des applications analogiques haute fréquence pour lesquelles des valeurs de fréquence de transition supérieures au THz sont obtenues.To extend the scaling of microelectronics devices, carbon nanotubes (CNT) are considered as one of the most promising alternative material to Silicon. Here we propose a study of Carbon Nanotube Field-Effect Transistor (CNTFET) based on the particle Monte Carlo technique which gives a good description of charge transport taking into account electron-phonon scattering mechanisms. For this work, the Monte Carlo simulator MONACO has been extended to take into account CNT material properties. We begin with a detailed study of intrinsic charge transport in semiconducting single-wall CNT. In particular, we point out the importance and the impact of electron-phonon scattering on transport properties and performance. We obtain electron mean-free paths strongly dependent on electric field: according to the dominant phonon mode, the mean free-path is higher than 100 nm at low field and smaller than 20 nm at high field. Next, we study a coaxially gated CNTFET with electrostatically doped source and drain extensions in order to give the key parameters governing the performances for logic and analog applications. The influence of electrostatic control by the gate, of ballistic transport and quantum capacitance limit in this low dimensional system is analysed and the results are validated by experimental works. Finally, an evaluation of CNTFET dynamic performance, based on relevant key metrics, is proposed for logic and high frequency applications. In particular, intrinsic gain cut off frequency higher than one terahertz is obtained for 100 nm long gate length.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF

    Differential innervation of superficial versus deep laminae of the dorsal horn by bulbo-spinal serotonergic pathways in the rat

    No full text
    International audienceConvergent data showed that bulbo-spinal serotonergic projections exert complex modulatory influences on nociceptive signaling within the dorsal horn. These neurons are located in the B3 area which comprises the median raphe magnus (RMg) and the lateral paragigantocellular reticular (LPGi) nuclei. Because LPGi 5-HT neurons differ from RMg 5-HT neurons regarding both their respective electro-physiological properties and responses to noxious stimuli, we used anatomical approaches for further characterization of the respective spinal projections of LPGi versus RMg 5-HT neuron subgroups. Adult Sprague-Dawley rats were stereotaxically injected into the RMg or the LPGi with the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L). The precise location of injection sites and RMg vs LPGi spinal projections into the different dorsal horn laminae were visualized by PHA-L immunolabeling. Double immunofluorescent labeling of PHA-L and the serotonin transporter (5-HTT) allowed detection of serotonergic fibers among bulbo-spinal projections. Anterograde tracing showed that RMg neurons project preferentially into the deep laminae V-VI whereas LPGi neuron projections are confined to the superficial laminae I-II of the ipsilateral dorsal horn. All along the spinal cord, double-labeled PHA-L/5-HTT immunoreactive fibers, which represent only 5 e15% of all PHA-L-immunoreactive projections, exhibit the same differential locations depending on their origin in the RMg versus the LPGi. The clear-cut distinction between dorsal horn laminae receiving bulbo-spinal serotonergic projections from the RMg versus the LPGi provides further anatomical support to the idea that the descending serotonergic pathways issued from these two bulbar nuclei might exert different modulatory influences on the spinal relay of pain signaling neuronal pathways

    Early alterations of Hedgehog signaling pathway in vascular endothelial cells after peripheral nerve injury elicit blood-nerve barrier disruption, nerve inflammation, and neuropathic pain development

    No full text
    Changes in the nerve's microenvironment and local inflammation resulting from peripheral nerve injury participate in nerve sensitization and neuropathic pain development. Taking part in these early changes, disruption of the blood–nerve barrier (BNB) allows for infiltration of immunocytes and promotes the neuroinflammation. However, molecular mechanisms engaged in vascular endothelial cells (VEC) dysfunction and BNB alterations remain unclear. In vivo, BNB permeability was assessed following chronic constriction injury (CCI) of the rat sciatic nerve (ScN) and differential expression of markers of VEC functional state, inflammation, and intracellular signaling was followed from 3 hours to 2 months postinjury. Several mechanisms potentially involved in functional alterations of VEC were evaluated in vitro using human VEC (hCMEC/D3), then confronted to in vivo physiopathological conditions. CCI of the ScN led to a rapid disruption of endoneurial vascular barrier that was correlated to a decreased production of endothelial tight-junction proteins and an early and sustained alteration of Hedgehog (Hh) signaling pathway. In vitro, activation of Toll-like receptor 4 in VEC downregulated the components of Hh pathway and altered the endothelial functional state. Inhibition of Hh signaling in the ScN of naive rats mimicked the biochemical and functional alterations observed after CCI and was, on its own, sufficient to evoke local neuroinflammation and sustained mechanical allodynia. Alteration of the Hh signaling pathway in VEC associated with peripheral nerve injury, is involved in BNB disruption and local inflammation, and could thus participate in the early changes leading to the peripheral nerve sensitization and, ultimately, neuropathic pain development

    Low-molecular-weight color pI markers to monitor on-line the peptide focusing process in OFFGEL fractionation

    No full text
    International audienceHigh-throughput mass spectrometry-based proteomic analysis requires peptide fraction-ation to simplify complex biological samples and increase proteome coverage. OFFGEL fractionation technology became a common method to separate peptides or proteins using isoelectric focusing in an immobilized pH gradient. However, the OFFGEL focusing process may be further optimized and controlled in terms of separation time and pI resolution. Here we evaluated OFFGEL technology to separate peptides from different samples in the presence of low-molecular-weight (LMW) color pI markers to visualize the focusing process. LMW color pI markers covering a large pH range were added to the peptide mixture before OFFGEL fractionation using a 24-wells device encompassing the pH range 3–10. We also explored the impact of LMW color pI markers on peptide fractionation labeled previously for iTRAQ. Then, fractionated peptides were separated by RP_HPLC prior to MS analysis using MALDI-TOF/TOF mass spectrometry in MS and MS/MS modes. Here we report the performance of the peptide focusing process in the presence of LMW color pI markers as on-line trackers during the OFFGEL process and the possibility to use them as pI controls for peptide focusing. This method improves the workflow for peptide fractionation in a bottom-up proteomic approach with or without iTRAQ labeling

    Biochemical evidence for the 5-HT agonist properties of PAT (8-hydroxy-2-(di-n-propylamino)tetralin) in the rat brain

    No full text
    In vitro investigations revealed that PAT (8-hydroxy-2-(n-dipropylamino)tetralin) interacted with postsynaptic 5-HT receptors in the rat brain: the drug stimulated 5-HT-sensitive adenylate cyclase in homogenates of colliculi from new-born rats (KAapp 8.6 μM) and inhibited the specific binding of [3H]5-HT to 5-HT1 sites. The PAT-induced inhibition of [3H]5-HT binding showed marked regional differences compatible with a preferential interaction of PAT (IC50 2 nM) with the 5-HT1A subclass. As previously seen with 5-HT agonists, the efficacy of PAT for displacing [3H]5-HT bound to hippocampal membranes was markedly increased by Mn2+ (1 nM) and reduced by GTP (0.1 nM). PAT also affected presynaptic 5-HT metabolism since it inhibited competitively (Ki 1.4 μM) [3H]5-HT uptake into cortical synaptosomes and reduced (in the presence of the 5-HT uptake inhibitor fluoxetine) the K+-evoked release of [3H]5-HT previously taken up or newly synthesized from [3H]tryptophan in cortical or striatal slices. This latter effect was prevented by 5-HT antagonists (methiothepin, metergoline) suggesting that it was mediated by the stimulation of presynaptic 5-HT autoreceptors by PAT. Like 5-HT, PAT counteracted the stimulatory effect of K+-induced depolarization on the synthesis of [3H]5-HT from [3H]tryptophan in cortical slices. It is concluded that PAT is a potent 5-HT agonist acting on both post- and presynaptic 5-HT receptors in the rat brain
    corecore