30 research outputs found

    Review: Adaptation of Beneficial Propionibacteria, Lactobacilli, and Bifidobacteria Improves Tolerance Toward Technological and Digestive Stresses

    Get PDF
    This review deals with beneficial bacteria, with a focus on lactobacilli, propionibacteria, and bifidobacteria. As being recognized as beneficial bacteria, they are consumed as probiotics in various food products. Some may also be used as starters in food fermentation. In either case, these bacteria may be exposed to various environmental stresses during industrial production steps, including drying and storage, and during the digestion process. In accordance with their adaptation to harsh environmental conditions, they possess adaptation mechanisms, which can be induced by pretreatments. Adaptive mechanisms include accumulation of compatible solutes and of energy storage compounds, which can be largely modulated by the culture conditions. They also include the regulation of energy production pathways, as well as the modulation of the cell envelop, i.e., membrane, cell wall, surface layers, and exopolysaccharides. They finally lead to the overexpression of molecular chaperones and of stress-responsive proteases. Triggering these adaptive mechanisms can improve the resistance of beneficial bacteria toward technological and digestive stresses. This opens new perspectives for the improvement of industrial processes efficiency with regard to the survival of beneficial bacteria. However, this bibliographical survey evidenced that adaptive responses are strain-dependent, so that growth and adaptation should be optimized case-by-case

    Global gene-expression analysis of the response of Salmonella Enteritidis to egg-white exposure reveals multiple egg-white-imposed stress responses

    Get PDF
    Chicken egg white protects the embryo from bacterial invaders by presenting an assortment of antagonistic activities that combine together to both kill and inhibit growth. The key features of the egg-white anti-bacterial system are iron restriction, high pH, antibacterial peptides and proteins, and viscosity. Salmonella enterica serovar Enteritidis is the major pathogen responsible for egg-borne infection in humans, which is partly explained by its exceptional capacity for survival under the harsh conditions encountered within egg white. However, at temperatures up to 42 ËšC, egg white exerts a much stronger bactericidal effect on S. Enteritidis than at lower tempertaures, although the mechanism of egg-white-induced killing is only partly understood. Here, for the first time, the impact of exposure of S. Enteritidis to egg white under bactericidal conditions (45 ËšC) is explored by global-expression analysis. A large-scale (18.7% of genome) shift in transcription is revealed suggesting major changes in specific aspects of S. Enteritidis physiology: induction of egg-white related stress-responses (envelope damage, exposure to heat and alkalinity, and translation shutdown); shift in energy metabolism from respiration to fermentation; and enhanced micronutrient provision (due to iron and biotin restriction). Little evidence of DNA damage or redox stress was obtained. Instead, data are consistent with envelope damage resulting in cell death by lysis. A surprise was the high degree of induction of hexonate/hexuronate utilisation genes, despite no evidence indicating the presence of these substrates in egg white

    Egg white versus Salmonella Enteritidis! A harsh medium meets a resilient pathogen

    Get PDF
    Salmonella enterica serovar Enteritidis is the prevalent egg-product-related food-borne pathogen. The egg-contamination capacity of S. Enteritidis includes its exceptional survival capability within the harsh conditions provided by egg white. Egg white proteins, such as lysozyme and ovotransferrin, are well known to play important roles in defence against bacterial invaders. Indeed, several additional minor proteins and peptides have recently been found to play known or potential roles in protection against bacterial contamination. However, although such antibacterial proteins are well studied, little is known about their efficacy under the environmental conditions prevalent in egg white. Thus, the influence of factors such as temperature, alkalinity, nutrient restriction, viscosity and cooperative interactions on the activities of antibacterial proteins in egg white remains unclear. This review critically assesses the available evidence on the antimicrobial components of egg white. In addition, mechanisms employed by S. Enteritidis to resist egg white exposure are also considered along with various genetic studies that have shed light upon egg white resistance systems. We also consider how multiple, antibacterial proteins operate in association with specific environmental factors within egg white to generate a lethal protective cocktail that preserves sterility

    The anti-bacterial iron-restriction defence mechanisms of egg white; the potential role of three lipocalin-like proteins in resistance against Salmonella

    Get PDF
    Salmonella enterica serovar Enteritidis (SE) is the most frequently-detected Salmonella in foodborne outbreaks in the European Union. Among such outbreaks, egg and egg products were identified as the most common vehicles of infection. Possibly, the major antibacterial property of egg white is iron restriction, which results from the presence of the iron-binding protein, ovotransferrin. To circumvent iron restriction, SE synthesise catecholate siderophores (i.e. enterobactin and salmochelin) that can chelate iron from host iron-binding proteins. Here, we highlight the role of lipocalin-like proteins found in egg white that could enhance egg-white iron restriction through sequestration of certain siderophores, including enterobactin. Indeed, it is now apparent that the egg-white lipocalin, Ex-FABP, can inhibit bacterial growth via its siderophore-binding capacity in vitro. However, it remains unclear whether ex-FABP performs such a function in egg white or during bird infection. Regarding the two other lipocalins of egg white (Cal-γ and α-1-glycoprotein), there is currently no evidence to indicate that they sequester siderophores

    Stress oxydant chez Campylobacter jejuni (implication du système thiorédoxine - thiorédoxine réductase)

    No full text
    Campylobacter jejuni est une bactérie à Gram négative microaérophile pathogène responsable d'un grand nombre d'entérites d'origine alimentaire. Cette bactérie est capable de survivre dans différents environnements et de s'adapter à des conditions non optimales pour sa croissance. Parmi ces conditions, le stress oxydant constitue un stress majeur pour tous les organismes vivants provoquant un déséquilibre du potentiel redox et l inactivation de nombreuses protéines. Parmi les différentes enzymes permettant un retour à l équilibre. Seul le système thiorédoxine-thiorédoxine réductase (TrxAB) a été annoté chez C. jejuni. Au cours de ce travail nous avons analysé l importance de ce système dans l adaptation au stress oxydant chez C. jejuni. Pour cela nous avons développé un milieu de culture synthétique dont tous les composants et leurs concentrations sont connus (milieu MCLMAN), il nous a permis d étudier la réponse au stress oxydant de cette bactérie. L identification des protéines spécifiquement réduites par TrxAB a montré que ce couple participe au fonctionnement de toutes les grandes voies métaboliques, certaines de ces enzymes sont uniques et considérées vitales dans d autres organismes. Le système TrxAB semble vital, les gènes correspondants n ont pas pu être inactivés.Campylobacter jejuni, a microaerophilic pathogen Gram-negative bacterium, is the causative agent of a large number of food-borne enteritis. This bacterium is able to survive in different environments and adapt to non-optimal growth conditions. Among these conditions, oxidative stress is a major stress for all living organisms that disturbs the cellular redox potential and inactivates numerous enzymes. Various systems can allow reversion but genome annotation of C. jejuni suggests that it possesses the thioredoxin-thioredoxin reductase (TrxAB) system only. Therefore, importance of this system was analysed during C. jejuni oxidative stress adaptation. Thus, we developed a synthetic medium having defined compound composition (MCLMAN medium) allowing the study of this bacterium oxidative stress response. Identification of proteins specifically reduced by TrxAB revealed its contribution to all main metabolic pathways; including reduction of unique enzymes considered as essential for other organisms. Furthermore, TrxAB encoding genes could not be inactivated in C. jejuni thus TrxAB system appears of vital importance in this bacterium.RENNES1-BU Sciences Philo (352382102) / SudocSudocFranceF

    Impact des osmolytes organiques sur l'activité catalytique des protéines

    No full text
    Au cours de ce travail nous avons montré que les osmolytes organiques tels que la glycine bétaïne (GB) inhibent l'activité de plusieurs enzymes dont celle de la glutamate déshydrogénase (GDH) et de la dihydrofolate réductase (DHFR). Cet effet est proportionnel à la concentration de l'osmolyte et présente les caractéristiques d'une inhibition incompétitive. Ces osmolytes organiques provoquent en effet une diminution de la vitesse de catalyse et une augmentation de l'affinité apparente pour les substrats. Au delà des paramètres optimaux des enzymes, ces dernières ne sont plus inhibées mais activées par la GB. Cette dualité d'effets est liée à la capacité de la GB à stabiliser les protéines et à réduire leur flexibilité. Nos résultats montrent que tous les solutés compatibles ont la capacité d'activer ou d'inhiber les enzymes, nous proposons un modèle qui, suivant les caractéristiques du soluté et de la protéine permet de comprendre cette dualité d'effet. Les agents déstabilisants tels que les sels, la température et l'urée ont un effet opposé à celui de la GB sur l'activité de la GDH. Leurs effets sont également intégrés au modèle proposé. L'inhibition de l'activité de la GDH contribuerait à réduire l'accumulation du glutamate lorsque la GB s'accumule dans la cellule. Ce phénomène permet ainsi d'expliquer la préférence des cellules pour la GB au détriment des solutés néosynthétisés lors de l'adaptation à un stress hyperosmotique. L'inhibition d'autres enzymes telles que la DHFR laisse présager un impact plus général de ces molécules sur le métabolisme cellulaire.RENNES1-BU Sciences Philo (352382102) / SudocSudocFranceF
    corecore