1,022 research outputs found

    LISA Science Results in the Presence of Data Disturbances

    Full text link
    Each spacecraft in the Laser Interferometer Space Antenna houses a proof mass which follows a geodesic through spacetime. Disturbances which change the proof mass position, momentum, and/or acceleration will appear in the LISA data stream as additive quadratic functions. These data disturbances inhibit signal extraction and must be removed. In this paper we discuss the identification and fitting of monochromatic signals in the data set in the presence of data disturbances. We also present a preliminary analysis of the extent of science result limitations with respect to the frequency of data disturbances

    A nonlinear detection algorithm for periodic signals in gravitational wave detectors

    Get PDF
    We present an algorithm for the detection of periodic sources of gravitational waves with interferometric detectors that is based on a special symmetry of the problem: the contributions to the phase modulation of the signal from the earth rotation are exactly equal and opposite at any two instants of time separated by half a sidereal day; the corresponding is true for the contributions from the earth orbital motion for half a sidereal year, assuming a circular orbit. The addition of phases through multiplications of the shifted time series gives a demodulated signal; specific attention is given to the reduction of noise mixing resulting from these multiplications. We discuss the statistics of this algorithm for all-sky searches (which include a parameterization of the source spin-down), in particular its optimal sensitivity as a function of required computational power. Two specific examples of all-sky searches (broad-band and narrow-band) are explored numerically, and their performances are compared with the stack-slide technique (P. R. Brady, T. Creighton, Phys. Rev. D, 61, 082001).Comment: 9 pages, 3 figures, to appear in Phys. Rev.

    Primordial and primary prevention of peri-implant diseases: A systematic review and meta-analysis

    Get PDF
    Aim: This systematic review and meta-analysis aims to assess the efficacy of risk factor control to prevent the occurrence of peri-implant diseases (PIDs) in adult patients awaiting dental implant rehabilitation (primordial prevention) or in patients with dental implants surrounded by healthy peri-implant tissues (primary prevention). Materials and Methods: A literature search was performed without any time limit on different databases up to August 2022. Interventional and observational studies with at least 6 months of follow-up were considered. The occurrence of peri-implant mucositis and/or peri-implantitis was the primary outcome. Pooled data analyses were performed using random effect models according to the type of risk factor and outcome. Results: Overall, 48 studies were selected. None assessed the efficacy of primordial preventive interventions for PIDs. Indirect evidence on the primary prevention of PID indicated that diabetic patients with dental implants and good glycaemic control have a significantly lower risk of peri-implantitis (odds ratio [OR] = 0.16; 95% confidence interval [CI]: 0.03–0.96; I2: 0%), and lower marginal bone level (MBL) changes (OR = –0.36 mm; 95% CI: −0.65 to −0.07; I2: 95%) compared to diabetic patients with poor glycaemic control. Patients attending supportive periodontal/peri-implant care (SPC) regularly have a lower risk of overall PIDs (OR = 0.42; 95% CI: 0.24–0.75; I2: 57%) and peri-implantitis compared to irregular attendees. The risk of dental implant failure (OR = 3.76; 95% CI: 1.50–9.45; I2: 0%) appears to be greater under irregular or no SPC than regular SPC. Implants sites with augmented peri-implant keratinized mucosa (PIKM) show lower peri-implant inflammation (SMD = –1.18; 95% CI: −1.85 to −0.51; I2: 69%) and lower MBL changes (MD = –0.25; 95% CI: −0.45 to −0.05; I2: 62%) compared to dental implants with PIKM deficiency. Studies on smoking cessation and oral hygiene behaviors were inconclusive. Conclusions: Within the limitations of available evidence, the present findings indicate that in patients with diabetes, glycaemic control should be promoted to avoid peri-implantitis development. The primary prevention of peri-implantitis should involve regular SPC. PIKM augmentation procedures, where a PIKM deficiency exists, may favour the control of peri-implant inflammation and the stability of MBL. Further studies are needed to assess the impact of smoking cessation and oral hygiene behaviours, as well as the implementation of standardized primordial and primary prevention protocols for PIDs

    Search for cool giant exoplanets around young and nearby stars - VLT/NaCo near-infrared phase-coronagraphic and differential imaging

    Full text link
    [Abridged] Context. Spectral differential imaging (SDI) is part of the observing strategy of current and future high-contrast imaging instruments. It aims to reduce the stellar speckles that prevent the detection of cool planets by using in/out methane-band images. It attenuates the signature of off-axis companions to the star, such as angular differential imaging (ADI). However, this attenuation depends on the spectral properties of the low-mass companions we are searching for. The implications of this particularity on estimating the detection limits have been poorly explored so far. Aims. We perform an imaging survey to search for cool (Teff<1000-1300 K) giant planets at separations as close as 5-10 AU. We also aim to assess the sensitivity limits in SDI data taking the photometric bias into account. This will lead to a better view of the SDI performance. Methods. We observed a selected sample of 16 stars (age < 200 Myr, d < 25 pc) with the phase-mask coronagraph, SDI, and ADI modes of VLT/NaCo. Results. We do not detect any companions. As for the sensitivity limits, we argue that the SDI residual noise cannot be converted into mass limits because it represents a differential flux, unlike the case of single-band images. This results in degeneracies for the mass limits, which may be removed with the use of single-band constraints. We instead employ a method of directly determining the mass limits. The survey is sensitive to cool giant planets beyond 10 AU for 65% and 30 AU for 100% of the sample. Conclusions. For close-in separations, the optimal regime for SDI corresponds to SDI flux ratios >2. According to the BT-Settl model, this translates into Teff<800 K. The methods described here can be applied to the data interpretation of SPHERE. We expect better performance with the dual-band imager IRDIS, thanks to more suitable filter characteristics and better image quality.Comment: 19 pages, 16 figures, accepted for publication in A&A, version including language editin

    Complete compensation of criss-cross deflection in a negative ion accelerator by magnetic technique

    Get PDF
    During 2016, a joint experimental campaign was carried out by QST and Consorzio RFX on the Negative Ion Test Stand (NITS) at the QST Naka Fusion Institute, Japan, with the purpose of validating some design solutions adopted in MITICA, which is the full-scale prototype of the ITER NBI, presently under construction at Consorzio RFX, Padova, Italy. The main purpose of the campaign was to test a novel technique, for suppressing the beamlet criss-cross magnetic deflection. This new technique, involving a set of permanent magnets embedded in the Extraction Grid, named Asymmetric Deflection Compensation Magnets (ADCM), is potentially more performing and robust than the traditional electrostatic compensation methods. The results of this first campaign confirmed the effectiveness of the new magnetic configuration in reducing the criss-cross magnetic deflection. Nonetheless, contrary to expectations, a complete deflection correction was not achieved. By analyzing in detail the results, we found indications that a physical process, taking place just upstream of the plasma grid, was giving an important contribution to the final deflection of the negative ion beam. This process appears to be related to the drift of negative ions inside the plasma source, in the presence of a magnetic field transverse to the extraction direction, and results in a non-uniform ion current density extracted at the meniscus. Therefore, the numerical models adopted in the design were improved by including this previously disregarded effect, so as to obtain a much better matching with the experimental results. Based on the results of the first campaign, new permanent magnets were designed and installed on the Extraction Grid of NITS. A second QST-Consorzio RFX joint experimental campaign was then carried out in 2017, demonstrating the complete correction of the criss-cross deflection and confirming the validity of the novel magnetic configuration and of the hypothesis behind the new models. This contribution presents the results of the second joint experimental campaign on NITS along with the overall data analysis of both campaigns, and the description of the improved models. A general picture is given of the relation among magnetic field, beam energy, meniscus non-uniformity and beamlet deflection, constituting a useful database for the design of future machines

    Shape analysis on homogeneous spaces: a generalised SRVT framework

    Full text link
    Shape analysis is ubiquitous in problems of pattern and object recognition and has developed considerably in the last decade. The use of shapes is natural in applications where one wants to compare curves independently of their parametrisation. One computationally efficient approach to shape analysis is based on the Square Root Velocity Transform (SRVT). In this paper we propose a generalised SRVT framework for shapes on homogeneous manifolds. The method opens up for a variety of possibilities based on different choices of Lie group action and giving rise to different Riemannian metrics.Comment: 28 pages; 4 figures, 30 subfigures; notes for proceedings of the Abel Symposium 2016: "Computation and Combinatorics in Dynamics, Stochastics and Control". v3: amended the text to improve readability and clarify some points; updated and added some references; added pseudocode for the dynamic programming algorithm used. The main results remain unchange

    A Compact and Lightweight Fibered Photometer for the PicSat Mission

    Get PDF
    PicSat is a nanosatellite developed to observe the transit of the giant planet β Pictoris, expected in late 2017. Its science objectives are: the observation of the transit of the giant planet’s Hill sphere, the detection of exocomets in the system, and the fine monitoring of the circumstellar disk inhomogeneities. To answer these objectives without exceeding the possibilities of a 3-unit Cubesat in terms of mass and power budget, a small but ambitious 2 kg opto-mechanical payload was designed. The instrument, specifically made for high precision photometry, uses a 3.7 cm effective aperture telescope which injects the light in a single-mode optical fiber linked to an avalanche photodioode. To ensure the stability of the light injection in the fiber, a fine pointing system based on a two-axis piezoelectric actuation system, is used. This system will achieve a sub-arcsecond precision, and ensure that an overall photometric precision of at least 200 ppm/hr can be reached
    corecore