56 research outputs found

    The Signature of Refreshed Shocks in the of Afterglow of GRB030329

    Full text link
    GRB030329 displays one clear and, possibly, multiple less intense fast-rising (Δt/t0.3\Delta t / t \sim 0.3) jumps in its optical afterglow light curve. The decay rate of the optical light curve remains the same before and after the photon flux jumps. This may be the signature of energy injection into the forward and reverse shocked material at the front of the jet. In this study, we model the Gamma-Ray Burst (GRB) ejecta as a series of shells of material. We follow the dynamical evolution of the ejecta as it interacts with itself (i.e., internal shocks) and with the circumburst medium (i.e., external forward and reverse shocks), and we calculate the emission from each shock event assuming synchrotron emission. We confirm the viability of the model proposed by \citet{2003Natur.426..138G} in which the jumps in the optical afterglow light curve of GRB030329 are produced via refreshed shocks. The refreshed shocks may be the signatures of the collisions between earlier ejected material with an average Lorentz factor Γˉ100\bar{\Gamma}\gtrsim 100 and later ejected material with Γˉ10\bar{\Gamma} \sim 10 once the early material has decelerated due to interaction with the circumburst medium. We show that even if the late material is ejected with a spread of Lorentz factors, internal shocks naturally produce a narrow distribution of Lorentz factors (ΔΓ/Γ0.1\Delta\Gamma/\Gamma\lesssim0.1), which is a necessary condition to produce the observed quick rise times of the jumps. These results imply a phase of internal shocks at some point in the dynamical evolution of the ejecta, which requires a low magnetization in the outflow.Comment: 11 pages, 6 figure

    Hadronic Models for the Extra Spectral Component in the short GRB 090510

    Full text link
    A short gamma-ray burst GRB 090510 detected by {\it Fermi} shows an extra spectral component between 10 MeV and 30 GeV, an addition to a more usual low-energy (<10<10 MeV) Band component. In general, such an extra component could originate from accelerated protons. In particular, inverse Compton emission from secondary electron-positron pairs and proton synchrotron emission are competitive models for reproducing the hard spectrum of the extra component in GRB 090510. Here, using Monte Carlo simulations, we test the hadronic scenarios against the observed properties. To reproduce the extra component around GeV with these models, the proton injection isotropic-equivalent luminosity is required to be larger than 105510^{55} erg/s. Such large proton luminosities are a challenge for the hadronic models.Comment: 12pages, 4 figures. Accepted for publication in ApJ

    Temporal and Spectral Evolution of Gamma-ray Burst Broad Pulses: Identification of High Latitude Emission in the Prompt Emission

    Full text link
    We perform a detailed analysis on broad pulses in bright Gamma-ray bursts (GRBs) to understand the evolution of GRB broad pulses. Using the temporal and spectral properties, we test the high latitude emission (HLE) scenario in the decaying phase of broad pulses. The HLE originates from the curvature effect of a relativistic spherical jet, where higher latitude photons are delayed and softer than the observer's line-of-sight emission. The signature of HLE has not yet been identified undisputedly during the prompt emission of GRBs. The HLE theory predicts a specific relation, Fν,Ep_{\nu, E_{p}} \propto E_{p}\!^{2}, between the peak energy EpE_{p} in ν\nuFν_{\nu} spectra and the spectral flux Fν_{\nu} measured at EpE_{p}, Fν,Ep_{\nu, E_{p}}. We search for evidence of this relation in 2157 GRBs detected by the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope (Fermi) from the years 2008 to 2017. After imposing unbiased selection criteria in order to minimize contamination in a signal by background and overlaps of pulses, we build a sample of 32 broad pulses in 32 GRBs. We perform a time-resolved spectral analysis on each of these 32 broad pulses and find that the evolution of 18 pulses (56%) is clearly consistent with the HLE relation. For the 18 broad pulses, the exponent δ\delta in the relation of Fν,Ep_{\nu, E_{p}} \propto E_{p}\!^{\delta} is distributed as a Gaussian function with median and width of 1.99 and 0.34, respectively. This result provides constraint on the emission radius of GRBs with the HLE signature.Comment: 30 pages, 36 figures, accepted to Ap

    Supermassive black holes at high redshifts

    Get PDF
    MeV blazars are the most luminous persistent sources in the Universe and emit most of their energy in the MeV band. These objects display very large jet powers and accretion luminosities and are known to host black holes with a mass often exceeding 109M10^9 M_{\odot}. An MeV survey, performed by a new generation MeV telescope which will bridge the entire energy and sensitivity gap between the current generation of hard X-ray and gamma-ray instruments, will detect >>1000 MeV blazars up to a redshift of z=56z=5-6. Here we show that this would allow us: 1) to probe the formation and growth mechanisms of supermassive black holes at high redshifts, 2) to pinpoint the location of the emission region in powerful blazars, 3) to determine how accretion and black hole spin interplay to power the jet.Comment: 7 pages, 4 figure. Submitted to the Astro2020 call for Science White Paper

    Anomalies in low-energy Gamma-Ray Burst spectra with the Fermi Gamma-Ray Burst Monitor

    Full text link
    A Band function has become the standard spectral function used to describe the prompt emission spectra of gamma-ray bursts (GRBs). However, deviations from this function have previously been observed in GRBs detected by BATSE and in individual GRBs from the \textit{Fermi} era. We present a systematic and rigorous search for spectral deviations from a Band function at low energies in a sample of the first two years of high fluence, long bursts detected by the \textit{Fermi} Gamma-Ray Burst Monitor (GBM). The sample contains 45 bursts with a fluence greater than 2×105\times10^{-5} erg / cm2^{2} (10 - 1000 keV). An extrapolated fit method is used to search for low-energy spectral anomalies, whereby a Band function is fit above a variable low-energy threshold and then the best fit function is extrapolated to lower energy data. Deviations are quantified by examining residuals derived from the extrapolated function and the data and their significance is determined via comprehensive simulations which account for the instrument response. This method was employed for both time-integrated burst spectra and time-resolved bins defined by a signal to noise ratio of 25 σ\sigma and 50 σ\sigma. Significant deviations are evident in 3 bursts (GRB\,081215A, GRB\,090424 and GRB\,090902B) in the time-integrated sample (\sim 7%) and 5 bursts (GRB\,090323, GRB\,090424, GRB\,090820, GRB\,090902B and GRB\,090926A) in the time-resolved sample (\sim 11%).} The advantage of the systematic, blind search analysis is that it can demonstrate the requirement for an additional spectral component without any prior knowledge of the nature of that extra component. Deviations are found in a large fraction of high fluence GRBs; fainter GRBs may not have sufficient statistics for deviations to be found using this method

    First-year Results of Broadband Spectroscopy of the Brightest Fermi-GBM Gamma-Ray Bursts

    Full text link
    We present here our results of the temporal and spectral analysis of a sample of 52 bright and hard gamma-ray bursts (GRBs) observed with the Fermi Gamma-ray Burst Monitor (GBM) during its first year of operation (July 2008-July 2009). Our sample was selected from a total of 253 GBM GRBs based on each event peak count rate measured between 0.2 and 40MeV. The final sample comprised 34 long and 18 short GRBs. These numbers show that the GBM sample contains a much larger fraction of short GRBs, than the CGRO/BATSE data set, which we explain as the result of our (different) selection criteria and the improved GBM trigger algorithms, which favor collection of short, bright GRBs over BATSE. A first by-product of our selection methodology is the determination of a detection threshold from the GBM data alone, above which GRBs most likely will be detected in the MeV/GeV range with the Large Area Telescope (LAT) onboard Fermi. This predictor will be very useful for future multiwavelength GRB follow ups with ground and space based observatories. Further we have estimated the burst durations up to 10MeV and for the first time expanded the duration-energy relationship in the GRB light curves to high energies. We confirm that GRB durations decline with energy as a power law with index approximately -0.4, as was found earlier with the BATSE data and we also notice evidence of a possible cutoff or break at higher energies. Finally, we performed time-integrated spectral analysis of all 52 bursts and compared their spectral parameters with those obtained with the larger data sample of the BATSE data. We find that the two parameter data sets are similar and confirm that short GRBs are in general harder than longer ones.Comment: 40 pages, 11 figures, 3 tables, Submitted to Ap

    Time-Resolved Spectroscopy of the 3 Brightest and Hardest Short Gamma-Ray Bursts Observed with the FGST Gamma-Ray Burst Monitor

    Full text link
    From July 2008 to October 2009, the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope (FGST) has detected 320 Gamma-Ray Bursts (GRBs). About 20% of these events are classified as short based on their T90 duration below 2 s. We present here for the first time time-resolved spectroscopy at timescales as short as 2 ms for the three brightest short GRBs observed with GBM. The time-integrated spectra of the events deviate from the Band function, indicating the existence of an additional spectral component, which can be fit by a power-law with index ~-1.5. The time-integrated Epeak values exceed 2 MeV for two of the bursts, and are well above the values observed in the brightest long GRBs. Their Epeak values and their low-energy power-law indices ({\alpha}) confirm that short GRBs are harder than long ones. We find that short GRBs are very similar to long ones, but with light curves contracted in time and with harder spectra stretched towards higher energies. In our time-resolved spectroscopy analysis, we find that the Epeak values range from a few tens of keV up to more than 6 MeV. In general, the hardness evolutions during the bursts follows their flux/intensity variations, similar to long bursts. However, we do not always see the Epeak leading the light-curve rises, and we confirm the zero/short average light-curve spectral lag below 1 MeV, already established for short GRBs. We also find that the time-resolved low-energy power-law indices of the Band function mostly violate the limits imposed by the synchrotron models for both slow and fast electron cooling and may require additional emission processes to explain the data. Finally, we interpreted these observations in the context of the current existing models and emission mechanisms for the prompt emission of GRBs.Comment: 14 pages, 10 figures, 9 tables, Accepted for publication in the Astrophysical Journal September, 23 2010 (Submitted May, 16 2010) Corrections: 1 reference updated, figure 10 captio
    corecore