79 research outputs found

    GaAs photonic crystal cavity with ultra-high Q: microwatt nonlinearity at 1.55 μ\mu m

    Full text link
    We have realized and measured a GaAs nanocavity in a slab photonic crystal based on the design by Kuramochi et al. [Appl. Phys.Lett., \textbf{88}, 041112, (2006)]. We measure a quality factor Q=700,000, which proves that ultra-high Q nanocavities are also feasible in GaAs. We show that, due to larger two-photon absorption (TPA) in GaAs, nonlinearities appear at the microwatt-level and will be more functional in gallium arsenide than in silicon nanocavities.Comment: 3 pages, 2 figures, accepted for publication in Optics Letter

    Measurement of the linear thermo-optical coefficient of Ga0.51_{0.51}In0.49_{0.49}P using photonic crystal nanocavities

    Full text link
    Ga0.51_{0.51}In0.49_{0.49}P is a promising candidate for thermally tunable nanophotonic devices due to its low thermal conductivity. In this work we study its thermo-optical response. We obtain the linear thermo-optical coefficient dn/dT=2.0±0.3⋅10−4 K−1dn/dT=2.0\pm0.3\cdot 10^{-4}\,\rm{K}^{-1} by investigating the transmission properties of a single mode-gap photonic crystal nanocavity.Comment: 7 pages, 4 figure

    Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide

    Full text link
    Nonlinear propagation experiments in GaAs photonic crystal waveguides (PCW) were performed, which exhibit a large enhancement of third order nonlinearities, due to light propagation in a slow mode regime, such as two-photon absorption (TPA), optical Kerr effect and refractive index changes due to TPA generated free-carriers. A theoretical model has been established that shows very good quantitative agreement with experimental data and demonstrates the important role that group velocity plays. These observations give a strong insight into the use of PCWs for optical switching devices.Comment: 6 page

    Oscillatory dynamics in nanocavities with noninstantaneous Kerr response

    Full text link
    We investigate the impact of a finite response time of Kerr nonlinearities over the onset of spontaneous oscillations (self-pulsing) occurring in a nanocavity. The complete characterization of the underlying Hopf bifurcation in the full parameter space allows us to show the existence of a critical value of the response time and to envisage different regimes of competition with bistability. The transition from a stable oscillatory state to chaos is found to occur only in cavities which are detuned far off-resonance, which turns out to be mutually exclusive with the region where the cavity can operate as a bistable switch

    Tuning out disorder-induced localization in nanophotonic cavity arrays

    Get PDF
    Weakly coupled high-Q nanophotonic cavities are building blocks of slow-light waveguides and other nanophotonic devices. Their functionality critically depends on tuning as resonance frequencies should stay within the bandwidth of the device. Unavoidable disorder leads to random frequency shifts which cause localization of the light in single cavities. We present a new method to finely tune individual resonances of light in a system of coupled nanocavities. We use holographic laser-induced heating and address thermal crosstalk between nanocavities using a response matrix approach. As a main result we observe a simultaneous anticrossing of 3 nanophotonic resonances, which were initially split by disorder.Comment: 11 page

    Dispersion of coupled mode-gap cavities

    Get PDF
    The dispersion of a CROW made of photonic crystal mode-gap cavities is pronouncedly asymmetric. This asymmetry cannot be explained by the standard tight binding model. We show that the fundamental cause of the asymmetric dispersion is the fact that the cavity mode profile itself is dispersive, i.e., the mode wave function depends on the driving frequency, not the eigenfrequency. This occurs because the photonic crystal cavity resonances do not form a complete set. By taking into account the dispersive mode profile, we formulate a mode coupling model that accurately describes the asymmetric dispersion without introducing any new free parameters.Comment: 4 pages, 4 figure
    • …
    corecore