10 research outputs found

    Extended pseudo-fermions from non commutative bosons

    Full text link
    We consider some modifications of the two dimensional canonical commutation relations, leading to {\em non commutative bosons} and we show how biorthogonal bases of the Hilbert space of the system can be obtained out of them. Our construction extends those recently introduced by one of us (FB), modifying the canonical anticommutation relations. We also briefly discuss how bicoherent states, producing a resolution of the identity, can be defined.Comment: Journal of Mathematical Physics, in pres

    On Hilbert-Schmidt operator formulation of noncommutative quantum mechanics

    Full text link
    This work gives value to the importance of Hilbert-Schmidt operators in the formulation of a noncommutative quantum theory. A system of charged particle in a constant magnetic field is investigated in this framework

    Coherent states, wavelets, and their generalizations

    No full text
    This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-like view of quantum states in physics.   Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altogether. In this context, wavelets can be generated from coherent states of the affine group of the real line, and higher-dimensional wavelets arise from coherent states of other groups. The unified background makes transparent an entire range of properties of wavelets and coherent states. Many concrete examples, such as coherent states from semisimple Lie groups, Gazeau-Klauder coherent states, coherent states for the relativity groups, and several kinds of wavelets, are discussed in detail. The book concludes with a palette of potential applications, from the quantum physically oriented, like the quantum-classical transition or the construction of adequate states in quantum information, to the most innovative techniques to be used in data processing.   Intended as an introduction to current research for graduate students and others entering the field, the mathematical discussion is self-contained. With its extensive references to the research literature, the first edition of the book is already a proven compendium for physicists and mathematicians active in the field, and with full coverage of the latest theory and results the revised second edition is even more valuable

    Coherent States, Wavelets and Their Generalizations

    No full text
    This book presents a survey of the theory of coherent states, wavelets, and some of their generalizations, emphasizing mathematical structures. The point of view is that both the theories of both wavelets and coherent states can be subsumed into a single analytic structure. Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altogether. In this context, wavelets can be generated from coherent states of the affine group of the real line, and higher-dimensional wavelets arise from coherent states of other groups. The unified background makes transparent otherwise obscure properties of wavelets and of coherent states. Many concrete examples, such as semisimple Lie groups, the relativity group, and several kinds of wavelets, are discussed in detail. The book concludes with physical applications, centering on the quantum measurement problem and the quantum-classical transition. Intended as an introduction to current research for graduate students and others entering the field, the mathematical discussion is self- contained. With its extensive references to the research literature, the book will also be a useful compendium of recent results for physicists and mathematicians already active in the field

    Covariant Transform

    No full text
    The paper develops theory of covariant transform, which is inspired by the wavelet construction. It was observed that many interesting types of wavelets (or coherent states) arise from group representations which are not square integrable or vacuum vectors which are not admissible. Covariant transform extends an applicability of the popular wavelets construction to classic examples like the Hardy space H2, Banach spaces, covariant functional calculus and many others
    corecore