22 research outputs found

    Investigation of the impact of nonsynonymous mutations on thyroid peroxidase dimer.

    No full text
    Congenital hypothyroidism is one of the most common preventable endocrine disorders associated with thyroid dysgenesis or dyshormonogenesis. Thyroid peroxidase (TPO) gene defect is mainly responsible for dyshormonogenesis; a defect in the thyroid hormone biosynthesis pathway. In Bangladesh, there is limited data regarding the genetic etiology of Congenital Hypothyroidism (CH). The present study investigates the impact of the detected mutations (p.Ala373Ser, and p.Thr725Pro) on the TPO dimer protein. We have performed sequential molecular docking of H2O2 and I- ligands with both monomers of TPO dimer to understand the iodination process in thyroid hormone biosynthesis. Understanding homodimer interactions at the atomic level is a critical challenge to elucidate their biological mechanisms of action. The docking results reveal that mutations in the dimer severely disrupt its catalytic interaction with essential ligands. Molecular dynamics simulation has been performed to validate the docking results, thus realizing the consequence of the mutation in the biological system's mimic. The dynamics results expose that mutations destabilize the TPO dimer protein. Finally, principal component analysis exhibits structural and energy profile discrepancies in wild-type and mutant dimers. The findings of this study highlight that the mutations in TPO protein can critically affect the dimer structure and loss of enzymatic activity is persistent. Other factors also might influence the hormone synthesis pathway, which is under investigation

    Zinc influences innate immune responses in children with enterotoxigenic Escherichia coli-induced diarrhea

    No full text
    Information is limited on the effect of zinc on immune responses in children with diarrhea due to enterotoxigenic Escherichia coli (ETEC), the most common bacterial pathogen in children. We studied the immunological effect of zinc treatment (20 mg/d) and supplementation (10 mg/d) in children with diarrhea due to ETEC. A total of 148 children aged 6-24 mo were followed up for 9 mo after a 10-d zinc treatment (ZT; n = 74) or a 10-d zinc treatment plus 3-mo supplementation (ZT+S; n = 74), as well as 50 children with ETEC-induced diarrhea that were not treated with zinc (UT). Fifty control children (HC) of the same age group from the same location were also studied. Serum zinc concentrations were higher in both the ZT (P < 0.001) and ZT+S groups (P < 0.001) than in the UT group but did not differ from the HC group. We found higher serum complement C3 immediately after zinc administration in both ZT (P < 0.001) and ZT+S (P < 0.001) groups than in the UT group. Phagocytic activity in children in both ZT (P < 0.01) and ZT+S (P < 0.01) groups was greater than in the UT group. However, oxidative burst capacity was lower in zinc-receiving groups (ZT, P < 0.001 and ZT+S, P < 0.001) than in the UT group. The naïve:memory T cell ratio in both ZT (P < 0.05) and ZT+S (P < 0.01) groups was higher than in the UT group from d 2 to 15. Increased responses, including complement C3, phagocytic activity, and changes in T cell phenotypes, suggest that zinc administration enhances innate immunity against ETEC infection in children

    Impaired acylcarnitine profile in transfusion-dependent beta-thalassemia major patients in Bangladesh

    No full text
    Patients with beta-thalassemia major (BTM) suffer from fatigue, poor physical fitness, muscle weakness, lethargy, and cardiac complications which are related to an energy crisis. Carnitine and acylcarnitine derivatives play important roles in fatty acid oxidation, and deregulation of carnitine and acylcarnitine metabolism may lead to an energy crisis. The present study aimed to investigate carnitine and acylcarnitine metabolites to gain an insight into the pathophysiology of BTM. Dried blood spots of 45 patients with BTM and 96 age-matched healthy controls were analyzed for free carnitine and 24 acylcarnitines by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Although medium chain acylcarnitine levels were similar in the patients with BTM and healthy controls, free carnitine, short chain acylcarnitines, long chain acylcarnitines, and total acylcarnitine levels were significantly lower in patients with BTM than in the healthy controls (P < 0.05). Moreover, an impaired fatty acid oxidation rate was observed in the patients with BTM, as manifested by decreased fatty acid oxidation indicator ratios, namely C2/C0 and (C2 + C3)/C0. Furthermore, an increase in the C0/(C16 + C18) ratio indicated reduced carnitine palmitoyltransferase-1 (CPT-1) activity in the patients with BTM compared with that in the healthy controls. Thus, a low level of free carnitine and acylcarnitines together with impaired CPT-1 activity contribute to energy crisis-related complications in the patients with BTM. Keywords: Beta-thalassemia major, Carnitine-acylcarnitine levels, Impairment in fatty acid oxidation, Carnitine Palmitoyltransferase-1 activit

    High resolution melting curve analysis enables rapid and reliable detection of G6PD variants in heterozygous females

    No full text
    Abstract Background Like glucose-6-phosphate dehydrogenase (G6PD) deficient hemizygous males and homozygous females, heterozygous females could also manifest hemolytic crisis, neonatal hyperbilirubinemia or kernicterus upon exposure to oxidative stress induced by certain foods such as fava beans, drugs or infections. Although hemizygous males and homozygous females are easily detected by conventional G6PD enzyme assay method, the heterozygous state could be missed by the conventional methods as the mosaic population of both normal and deficient RBCs circulates in the blood. Thus the present study aimed to apply high resolution melting (HRM) curve analysis approach to see whether HRM could be used as a supplemental approach to increase the chance of detection of G6PD heterozygosity. Results Sixty-three clinically suspected females were evaluated for G6PD status using both enzyme assay and HRM analysis. Four out of sixty-three participants came out as G6PD deficient by the enzyme assay method, whereas HRM approach could identify nine participants with G6PD variants, one homozygous and eight heterozygous. Although only three out of eight heterozygous samples had G6PD enzyme deficiency, the HRM-based heterozygous G6PD variants detection for the rest of the samples with normal G6PD enzyme activities could have significance because their newborns might fall victim to serious consequences under certain oxidative stress. Conclusions In addition to the G6PD enzyme assay, HRM curve analysis could be useful as a supplemental approach for detection of G6PD heterozygosity

    High resolution melting curve analysis targeting the HBB gene mutational hot-spot offers a reliable screening approach for all common as well as most of the rare beta-globin gene mutations in Bangladesh

    No full text
    Abstract Background Bangladesh lies in the global thalassemia belt, which has a defined mutational hot-spot in the beta-globin gene. The high carrier frequencies of beta-thalassemia trait and hemoglobin E-trait in Bangladesh necessitate a reliable DNA-based carrier screening approach that could supplement the use of hematological and electrophoretic indices to overcome the barriers of carrier screening. With this view in mind, the study aimed to establish a high resolution melting (HRM) curve-based rapid and reliable mutation screening method targeting the mutational hot-spot of South Asian and Southeast Asian countries that encompasses exon-1 (c.1 - c.92), intron-1 (c.92 + 1 - c.92 + 130) and a portion of exon-2 (c.93 - c.217) of the HBB gene which harbors more than 95% of mutant alleles responsible for beta-thalassemia in Bangladesh. Results Our HRM approach could successfully differentiate ten beta-globin gene mutations, namely c.79G > A, c.92 + 5G > C, c.126_129delCTTT, c.27_28insG, c.46delT, c.47G > A, c.92G > C, c.92 + 130G > C, c.126delC and c.135delC in heterozygous states from the wild type alleles, implying the significance of the approach for carrier screening as the first three of these mutations account for ~85% of total mutant alleles in Bangladesh. Moreover, different combinations of compound heterozygous mutations were found to generate melt curves that were distinct from the wild type alleles and from one another. Based on the findings, sixteen reference samples were run in parallel to 41 unknown specimens to perform direct genotyping of the beta-thalassemia specimens using HRM. The HRM-based genotyping of the unknown specimens showed 100% consistency with the sequencing result. Conclusions Targeting the mutational hot-spot, the HRM approach could be successfully applied for screening of beta-thalassemia carriers in Bangladesh as well as in other countries of South Asia and Southeast Asia. The approach could be a useful supplement of hematological and electrophortic indices in order to avoid false positive and false negative results

    Age-Specific Cut-off Values of Amino Acids and Acylcarnitines for Diagnosis of Inborn Errors of Metabolism Using Liquid Chromatography Tandem Mass Spectrometry

    No full text
    Liquid Chromatography tandem mass spectrometry (LC-MS/MS) is used for the diagnosis of more than 30 inborn errors of metabolisms (IEMs). Accurate and reliable diagnosis of IEMs by quantifying amino acids (AAs) and acylcarnitines (ACs) using LC-MS/MS systems depend on the establishment of age-specific cut-offs of the analytes. This study aimed to (1) determine the age-specific cut-off values of AAs and ACs in Bangladesh and (2) validate the LC-MS/MS method for diagnosis of the patients with IEMs. A total of 570 enrolled healthy participants were divided into 3 age groups, namely, (1) newborns (1-7 days), (2) 8 days–7 years, and (3) 8–17 years, to establish the age-specific cut-offs for AAs and ACs. Also, 273 suspected patients with IEMs were enrolled to evaluate the reliability of the established cut-off values. Quantitation of AAs and ACs was performed on an automated LC-MS/MS system using dried blood spot (DBS) cards. Then the specimens of the enrolled clinically suspected patients were analyzed by the established method. Nine patients came out as screening positive for different IEMs, including two borderline positive cases of medium-chain acyl-CoA dehydrogenase deficiency (MCAD). A second-tier test for confirmation of the screening positive cases was conducted by urinary metabolic profiling using gas chromatography- mass spectrometry (GC-MS). Out of 9 cases that came out as screening positive by LC-MS/MS, seven cases were confirmed by urinary GC-MS analysis including 3 cases with phenylketonuria, 1 with citrullinemia type II, 1 with methylmalonic acidemia, 1 with isovaleric acidemia and 1 with carnitine uptake defect. Two borderline positive cases with MCAD were found negative by urinary GC-MS analysis. In conclusion, along with establishment of a validated LC-MS/MS method for quantitation of AAs and ACs from the DBS cards, the study also demonstrates the presence of predominantly available IEMs in Bangladesh

    Mutation Spectrum in TPO Gene of Bangladeshi Patients with Thyroid Dyshormonogenesis and Analysis of the Effects of Different Mutations on the Structural Features and Functions of TPO Protein through In Silico Approach

    No full text
    Although thyroid dyshormonogenesis (TDH) accounts for 10-20% of congenital hypothyroidism (CH), the molecular etiology of TDH is unknown in Bangladesh. Thyroid peroxidase (TPO) is most frequently associated with TDH and the present study investigated the spectrum of TPO mutations in Bangladeshi patients and analyzed the effects of mutations on TPO protein structure through in silico approach. Sequencing-based analysis of TPO gene revealed four mutations in 36 diagnosed patients with TDH including three nonsynonymous mutations, namely, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, and one synonymous mutation p.Pro715Pro. Homology modelling-based analysis of predicted structures of MPO-like domain (TPO142-738) and the full-length TPO protein (TPO1-933) revealed differences between mutant and wild type structures. Molecular docking studies were performed between predicted structures and heme. TPO1-933 predicted structure showed more reliable results in terms of interactions with the heme prosthetic group as the binding energies were -11.5 kcal/mol, -3.2 kcal/mol, -11.5 kcal/mol, and -7.9 kcal/mol for WT, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, respectively, implying that p.Ala373Ser and p.Thr725Pro mutations were more damaging than p.Ser398Thr. However, for the TPO142-738 predicted structures, the binding energies were -11.9 kcal/mol, -10.8 kcal/mol, -2.5 kcal/mol, and -5.3 kcal/mol for the wild type protein, mutant proteins with p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro substitutions, respectively. However, when the interactions between the crucial residues including residues His239, Arg396, Glu399, and His494 of TPO protein and heme were taken into consideration using both TPO1-933 and TPO142-738 predicted structures, it appeared that p.Ala373Ser and p.Thr725Pro could affect the interactions more severely than the p.Ser398Thr. Validation of the molecular docking results was performed by computer simulation in terms of quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulation. In conclusion, the substitutions mutations, namely, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, had been involved in Bangladeshi patients with TDH and molecular docking-based study revealed that these mutations had damaging effect on the TPO protein activity
    corecore