61 research outputs found
The use of folic acid in dengue: Has it any value?
Folic acid is used in dengue patients. Our study aims to compare the duration of recovery of thrombocytopenia in patients with dengue infection who received folic acid and those who did not. We retrospectively reviewed the medical records of adult patients admitted over six years with a diagnosis of dengue. Of 2216 patients, 1464 fulfilled the inclusion criteria. Group A were those patients who received folic acid and group B were those who did not. A total of 1322 (90.3%) patients received folic acid. The mean time period required for platelets to double the nadir was 1.7 (±2.2) days in both groups A and B ( P = 0.89). In conclusion, there is no significant difference in the recovery of thrombocytopenia in patients with dengue fever who received folic and those who did not receive folic acid
Cardiovascular Aspects of Patients with Chronic Kidney Disease and End-Stage Renal Disease
Chronic kidney disease (CKD) is a globally recognized public health concern. Multiple studies have shown the association of CKD with cardiovascular mortality that persists after adjustment for traditional cardiovascular disease (CVD) risk factors. CKD causes accelerated coronary artery disease (CAD). In this chapter, we discuss the pathophysiological mechanisms that play a role in increasing CVD risk in patients with CKD. Further we delve into some commonly encountered challenges related to CVD in patients with CKD. These include revascularization challenges, contrasted induced nephropathy and alterations in traditional risk factors for CVD in renal transplant patients
The Pakistan risk of myocardial infarction study: A resource for the study of genetic, lifestyle and other determinants of myocardial infarction in south Asia
The burden of coronary heart disease (CHD) is increasing at a greater rate in South Asia than in any other region globally, but there is little direct evidence about its determinants. The Pakistan Risk of Myocardial Infarction Study (PROMIS) is an epidemiological resource to enable reliable study of genetic, lifestyle and other determinants of CHD in South Asia. By March 2009, PROMIS had recruited over 5,000 cases of first-ever confirmed acute myocardial infarction (MI) and over 5,000 matched controls aged 30-80 years. For each participant, information has been recorded on demographic factors, lifestyle, medical and family history, anthropometry, and a 12-lead electrocardiogram. A range of biological samples has been collected and stored, including DNA, plasma, serum and whole blood. During its next stage, the study aims to expand recruitment to achieve a total of about 20,000 cases and about 20,000 controls, and, in subsets of participants, to enrich the resource by collection of monocytes, establishment of lymphoblastoid cell lines, and by resurveying participants. Measurements in progress include profiling of candidate biochemical factors, assay of 45,000 variants in 2,100 candidate genes, and a genomewide association scan of over 650,000 genetic markers. We have established a large epidemiological resource for CHD in South Asia. In parallel with its further expansion and enrichment, the PROMIS resource will be systematically harvested to help identify and evaluate genetic and other determinants of MI in South Asia. Findings from this study should advance scientific understanding and inform regionally appropriate disease prevention and control strategies
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
Techno-Economic Analysis of Solar PV Electricity Supply to Rural Areas of Balochistan, Pakistan
Rural electrification is a fundamental step towards achieving universal access to electricity by 2030. On-grid rural electrification remains a costly proposition, therefore the need to consider off-grid renewable energy solutions is inevitable. However, the critical issue pertaining to local power generation through renewable energy is the absence of area-specific production capacity and economic viability data for the different renewable energy technologies. This paper addresses this issue for Pakistan’s Balochistan province by assessing the area’s potential and economic feasibility of using solar PV for rural electrification. The results suggest that the Balochistan province has the best solar irradiance value in the world. Furthermore, optimal tilt angles calculated for respective regions can significantly increase solar energy yield. The economic feasibility study, carried out for solar PV systems, reveals that the electricity generated using solar PV costs Rs. 7.98 per kWh and is considerably cheaper than conventional electricity, which costs approximately Rs. 20.79 per kWh. Similarly, solar PV systems could mitigate 126,000 metric tons of CO2 annually if 100% of the unelectrified households adopted solar PV systems. Based on these research findings, this paper proposes a policy that would serve as a guideline for the government to extend solar PV-based off-grid rural electrification projects in Balochistan as well as on a national scale
Factors affecting trust in publishing personal information in online social network: An empirical study of Malaysia’s Klang Valley users
Online Social Networking (OSN) is a platform that enables one to socialize over the world online without having to
meet anyone physically or face to face. However, privacy in OSN sites is becoming a main concern for users
because of the potential threats that come with sharing one’s personal information online. The purpose of our study
was to examine the key factors that influence the trust in publishing personal information on Online Social Network
(OSN) sites in Malaysia. Primary data were gathered from 201 users comprising university students and working
adults residing in the Klang Valley. Five factors were selected to gauge the users’ perception of potential threats ,
namely, security/privacy of the website, word of mouth of family and friends, functional motives of OSN users,
social motives of OSN users and psychological motives of OSN users. Results of the study showed that
security/privacy, word of mouth, functional motives and social motives significantly affected the publishing of
respondents’ personal information on online social network sites. The implication is that the largest challenge of
both now and in the future, in terms of users protecting themselves and their information, will be to find out and
understand how to effectively access and change the privacy settings offered by all OSN sites
Texture Retrieval with Descriptors Based on Local Fourier Transform: Comparing the Rectangular and Circular Neighbourhoods
The texture descriptors derived from 1-D DFT (Discrete Fourier Transform) of the
pixel values of a local neighbourhood have been shown to perform better than the
methods based on wavelets for image retrieval and recognition. These DFT-based texture
descriptors were extracted from rectangular or circular neighbourhoods. This paper
compares the texture descriptors extracted from rectangular and the circular
neighbourhoods previously proposed in the literature. A database of images is
constructed from Brodatz album and the texture descriptors extracted from the two
types of neighbourhoods are compared for texture retrieval. This paper shows that
extracting DFT-based features from circular neighbourhood is almost thrice as
expensive as extracting the same from the rectangular neighbourhood. The results of
image retrieval on a large image database show that the descriptor extracted from
rectangular neighbourhoods performs better than the same extracted from the circular
neighbourhoods
A Discrete Time Queueing Approach to Model and Evaluate Slotted Ring Network Buffer using Matrix Geometric Method
Assorted analytical methods have been proposed for evaluating the performance of a
slotted ring network. This paper proposes MGM (Matrix Geometric Method) to analyze
the station buffer of a slotted ring for DT (Discrete-Time) queueing. The slotted ring is
analyzed for infinite station buffer as a late arrival DT system. Utilizing the
characteristics of 2-D Markov chain, various performance measures are validated
with their corresponding results such as, throughput and MPAD (Mean Packet Access
Delay) as well as the packet rejection probability for finite station buffer. The presented
results prove efficacy of the method
Charging Station Distribution Optimization Using Drone Fleet in a Disaster
A disaster is an unforeseen calamity that can cause damage to properties and can bring about a loss of human lives. Usually, many relief supplies, such as clean water, food, and medical supplies, are required by disaster victims. Quick response and rapid distribution of essential relief items into the affected region can save countless lives and prevent or slow down the effects of disasters. In this regard, disaster management comes into play, which is highly dependent on the topography and access of the disaster-hit area. If the disaster-hit site has little or no road connectivity, the use of UAVs/drones becomes essential in delivering health packages to the affected areas to assist with humanitarian aid. Since the battery capacity of the drone is limited, UAVs/drones require charging stations located at various places to carry out the necessary relief work. These charging stations should be transported using road infrastructure and preinstalled in disaster-prone areas, as access to these areas may be denied once the disaster hits. This article presents a novel optimization model to distribute relief items to disaster-hit areas. The objective of this model is to optimize the location and the number of the charging stations. We consider the relative priority of locations where a preference is given to locations with higher priority levels. The optimal number of charging stations and optimal routes has also been determined by using our optimization model. To illustrate the use of our model, numerical examples have been simulated for a different number of targets. Through our numerical simulation, it was observed that the drone’s maximum distance capacity is the key factor in determining the optimal grid size, which directly correlates to the number of charging stations
- …