114 research outputs found

    Beam-excited whistler waves at oblique propagation with relation to STEREO radiation belt observations

    Get PDF
    Isotropic electron beams are considered to explain the excitation of whistler waves which have been observed by the STEREO satellite in the Earth's radiation belt. Aside from their large amplitudes (~240 mV/m), another main signature is the strongly inclined propagation direction relative to the ambient magnetic field. Electron temperature anisotropy with <I>T</I><sub>e&#x22A5;</sub>&gt;<I>T</I><sub>e||</sub>, which preferentially generates parallel propagating whistler waves, can be excluded as a free energy source. The instability arises due to the interaction of the Doppler-shifted cyclotron mode &omega;=&minus;&Omega;<sub>e</sub>+<I>kV</I><sub>b</sub>cos&theta; with the whistler mode in the wave number range of <I>kc</I>/&omega;<sub>e</sub>&le;1 (θ is the propagation angle with respect to the background magnetic field direction, &omega;<sub>e</sub> is the electron plasma frequency and &Omega;<sub>e</sub> the electron cyclotron frequency). Fluid and kinetic dispersion analysis have been used to calculate the growth rate of the beam-excited whistlers including the most important parameter dependencies. One is the beam velocity (<I>V</I><sub>b</sub>) which, for instability, has to be larger than about 2<I>V</I><sub>Ae</sub>, where <I>V</I><sub>Ae</sub> is the electron Alfvén speed. With increasing <I>V</I><sub>Ae</sub> the propagation angle (θ) of the fastest growing whistler waves shifts from &theta;~20&deg; for <I>V</I><sub>b</sub>=2<I>V</I><sub>Ae</sub> to &theta;~80&deg; for <I>V</I><sub>b</sub>=5<I>V</I><sub>Ae</sub>. The growth rate is reduced by finite electron temperatures and disappears if the electron plasma beta (&beta;<sub>e</sub>) exceeds &beta;<sub>e</sub>~0.2. In addition, Gendrin modes (<I>kc</I>/&omega;<sub>e</sub>&asymp;1) are analyzed to determine the conditions under which stationary nonlinear waves (whistler oscillitons) can exist. The corresponding spatial wave profiles are calculated using the full nonlinear fluid approach. The results are compared with the STEREO satellite observations

    Fluid Simulations of Three-Dimensional Reconnection that Capture the Lower-Hybrid Drift Instability

    Full text link
    Fluid models that approximate kinetic effects have received attention recently in the modelling of large scale plasmas such as planetary magnetospheres. In three-dimensional reconnection, both reconnection itself and current sheet instabilities need to be represented appropriately. We show that a heat flux closure based on pressure gradients enables a ten moment fluid model to capture key properties of the lower-hybrid drift instability (LHDI) within a reconnection simulation. Characteristics of the instability are examined with kinetic and fluid continuum models, and its role in the three-dimensional reconnection simulation is analysed. The saturation level of the electromagnetic LHDI is higher than expected which leads to strong kinking of the current sheet. Therefore, the magnitude of the initial perturbation has significant impact on the resulting turbulence.Comment: 20 pages, 9 figure

    Particle Energization in an Expanding Magnetized Relativistic Plasma

    Full text link
    Using a 2-1/2-dimensional particle-in-cell (PIC) code to simulate the relativistic expansion of a magnetized collisionless plasma into a vacuum, we report a new mechanism in which the magnetic energy is efficiently converted into the directed kinetic energy of a small fraction of surface particles. We study this mechanism for both electron-positron and electron-ion (mi/me=100, me is the electron rest mass) plasmas. For the electron-positron case the pairs can be accelerated to ultra-relativistic energies. For electron-ion plasmas most of the energy gain goes to the ions.Comment: 7 pages text plus 5 figures, accepted for publication by Physical Review Letter

    Spin wave dynamics and the determination of intrinsic Gilbert damping in locally-excited Permalloy thin films

    Full text link
    Time-resolved scanning Kerr effect microscopy has been used to study magnetization dynamics in Permalloy thin films excited by transient magnetic pulses generated by a micrometer-scale transmission line structure. The results are consistent with magnetostatic spin wave theory and are supported by micromagnetic simulations. Magnetostatic volume and surface spin waves are measured for the same specimen using different bias field orientations and can be accurately calculated by k-space integrations over all excited plane wave components. A single damping constant of Gilbert form is sufficient to describe both scenarios. The nonuniform pulsed field plays a key role in the spin wave dynamics, with its Fourier transform serving as a weighting function for the participating modes. The intrinsic Gilbert damping parameter α\alpha is most conveniently measured when the spin waves are effectively stationary.Comment: 5 pages, 4 figures, accepted by Phys. Rev. Let

    Pair Plasma Instability in Homogeneous Magnetic Guide Fields

    Get PDF
    Pair plasmas, collections of both matter and antimatter particles of equal mass, represent a paradigm for the study of basic plasma science, and many open questions exist regarding these unique systems. They are found in many astrophysical settings, such as gamma-ray bursts, and have recently also been produced in carefully designed laboratory experiments. A central research topic in plasma physics is instability; however, unlike their more common ion–electron siblings, pair plasmas are generally thought to be stable to cross field pressure gradients in homogeneous magnetic fields. It is shown here by means of kinetic full-f simulations that, when a pressure gradient is first established, the Gradient-driven Drift Coupling mode is destabilized and becomes turbulent. Force balance is eventually achieved by a combination of flattened pressure profiles due to turbulent transport and establishment of a magnetic field gradient, saturating the growth. During the unstable phase, key physics can be captured by a δf gyrokinetic description, where it is shown analytically and numerically that parallel particle motion results in a coupling of all electromagnetic field components. A fluid model derived therefrom accurately predicts linear eigenmodes and is used to resolve global profile effects. For laser-based electron–positron plasma experiments, prompt instability is predicted with growth times much shorter than plasma lifetimes. Similarly, growth rates are calculated for the planned APEX experiment as well as gamma-ray burst scenarios, suggesting that the instability may contribute to the early evolution of these systems.</p

    Microscopic origin of the Drude-Smith model

    Get PDF
    The Drude-Smith model has been used extensively in fitting the THz conductivities of nanomaterials with carrier confinement on the mesoscopic scale. Here, we show that the conventional "backscattering" explanation for the suppression of low-frequency conductivities in the Drude-Smith model is not consistent with a confined Drude gas of classical noninteracting electrons and we derive a modified Drude-Smith conductivity formula based on a diffusive restoring current. We perform Monte Carlo simulations of a model system and show that the modifiedDrude-Smith model reproduces the extracted conductivitieswithout free parameters. This alternate route to the Drude-Smith model provides the popular formula with a more solid physical foundation and well-defined fit parameters

    Condensation of microturbulence-generated shear flows into global modes

    Get PDF
    In full flux-surface computer studies of tokamak edge turbulence, a spectrum of shear flows is found to control the turbulence level and not just the conventional (0,0)-mode flows. Flux tube domains too small for the large poloidal scale lengths of the continuous spectrum tend to overestimate the flows, and thus underestimate the transport. It is shown analytically and numerically that under certain conditions dominant (0,0)-mode flows independent of the domain size develop, essentially through Bose-Einstein condensation of the shear flows.Comment: 5 pages, 4 figure

    Enhanced inverse bremsstrahlung heating rates in a strong laser field

    Full text link
    Test particle studies of electron scattering on ions, in an oscillatory electromagnetic field have shown that standard theoretical assumptions of small angle collisions and phase independent orbits are incorrect for electron trajectories with drift velocities smaller than quiver velocity amplitude. This leads to significant enhancement of the electron energy gain and the inverse bremsstrahlung heating rate in strong laser fields. Nonlinear processes such as Coulomb focusing and correlated collisions of electrons being brought back to the same ion by the oscillatory field are responsible for large angle, head-on scattering processes. The statistical importance of these trajectories has been examined for mono-energetic beam-like, Maxwellian and highly anisotropic electron distribution functions. A new scaling of the inverse bremsstrahlung heating rate with drift velocity and laser intensity is discussed.Comment: 12 pages, 12 figure
    • …
    corecore