5 research outputs found

    Spatial and seasonal patterns of rainfall erosivity in the Lake Kivu region: insights from a meteorological observatory network

    No full text
    In the Lake Kivu region, water erosion is the main driver for soil degradation, but observational data to quantify the extent and to assess the spatial-temporal dynamics of the controlling factors are hardly available. In particular, high spatial and temporal resolution rainfall data are essential as precipitation is the driving force of soil erosion. In this study, we evaluated to what extent high temporal resolution data from the TAHMO network (with poor spatial and long-term coverage) can be combined with low temporal resolution data (with a high spatial density covering long periods of time) to improve rainfall erosivity assessments. To this end, 5 minute rainfall data from TAHMO stations in the Lake Kivu region, representing ca. 37 observation-years, were analyzed. The analysis of the TAHMO data showed that rainfall erosivity was mainly controlled by rainfall amount and elevation and that this relation was different for the dry and wet season. By combining high and low temporal resolution databases and a set of spatial covariates, an environmental regression approach (GAM) was used to assess the spatiotemporal patterns of rainfall erosivity for the whole region. A validation procedure showed relatively good predictions for most months (R2 between 0.50 and 0.80), while the model was less performant for the wettest (April) and two driest months (July and August) (R2 between 0.24 and 0.38). The predicted annual erosivity was highly variable with a range between 2000 and 9000 MJ mm ha−1 h−1 yr−1 and showed a pronounced east–west gradient which is strongly influenced by local topography. This study showed that the combination of high and low temporal resolution rainfall data and spatial prediction models can be used to improve the assessments of monthly and annual rainfall erosivity patterns that are grounded in locally calibrated and validated data

    Detailed multidisciplinary monitoring reveals pre- and co-eruptive signals at Nyamulagira volcano (North Kivu, Democratic Republic of Congo)

    No full text
    This paper presents a thorough description of Nyamulagira’s January 2010 volcanic eruption (North Kivu, Democratic Republic of Congo), based on a combination of field observation and ground-based and space-borne data. It is the first eruption in the Virunga Volcanic Province that has been described by a combination of several modern monitoring techniques. The 2010 eruption lasted 26 days and emitted ∼45.5 × 106 m3 of lava. Field observations divided the event into four eruptive stages delimited by major changes in effusive activity. These stages are consistent with those described by Pouclet (1976) for historical eruptions of Nyamulagira. Co-eruptive signals from ground deformation, seismicity, SO2 emission and thermal flux correlate with the eruptive stages. Unambiguous pre-eruptive ground deformation was observed 3 weeks before the lava outburst, coinciding with a small but clear increase in the short period seismicity and SO2 emission. The 3 weeks of precursors contrasts with the only precursory signal previously recognized in the Virunga Volcanic Province, the short-term increase of tremor and long period seismicity, which, for example, were only detected less than 2 h prior to the 2010 eruption. The present paper is the most detailed picture of a typical flank eruption of this volcano. It provides valuable tools for re-examining former—mostly qualitative—descriptions of historical Nyamulagira eruptions that occurred during the colonial period.The monitoring efforts and equipment were deployed in the framework of the following projects: GORISK (funded by the Belgian Science Policy and the National Research Fund of Luxembourg), NOVAC (funded under the EU-FP6 programme), ViSOR (funded by the US National Science Foundation and the US National Geographic Society) and the UN projects in Democratic Republic of Congo ‘Volcano Risk Reduction Unit’ (UNDP project funded by the British and the Swiss Cooperation) and ‘Analysis and Prevention of Natural Hazards’ (UNOPS project funded by the European Union and the Swiss Cooperation). Research by J. Fernández, J.F. Prieto, P.J. González and J.L.G. Pallero has also been supported by research project AYA2010-17448. P.J. González acknowledges the Banting Postdoctoral Fellowship (Canadian Government). It is a contribution for the CEI Campus Moncloa. K. Tiampo is funded by an NSERC Discovery Grant.Peer reviewe

    Detailed multidisciplinary monitoring reveals pre- and co-eruptive signals at Nyamulagira volcano (North Kivu, Democratic Republic of Congo)

    No full text
    This paper presents a thorough description of Nyamulagira’s January 2010 volcanic eruption (North Kivu, Democratic Republic of Congo), based on a combination of field observation and ground-based and space-borne data. It is the first eruption in the Virunga Volcanic Province that has been described by a combination of several modern monitoring techniques. The 2010 eruption lasted 26 days and emitted ∼45.5 × 106 m3 of lava. Field observations divided the event into four eruptive stages delimited by major changes in effusive activity. These stages are consistent with those described by Pouclet (1976) for historical eruptions of Nyamulagira. Co-eruptive signals from ground deformation, seismicity, SO2 emission and thermal flux correlate with the eruptive stages. Unambiguous pre-eruptive ground deformation was observed 3 weeks before the lava outburst, coinciding with a small but clear increase in the short period seismicity and SO2 emission. The 3 weeks of precursors contrasts with the only precursory signal previously recognized in the Virunga Volcanic Province, the short-term increase of tremor and long period seismicity, which, for example, were only detected less than 2 h prior to the 2010 eruption. The present paper is the most detailed picture of a typical flank eruption of this volcano. It provides valuable tools for re-examining former—mostly qualitative—descriptions of historical Nyamulagira eruptions that occurred during the colonial period

    Detailed multidisciplinary monitoring reveals pre- and co-eruptive signals at Nyamulagira volcano (North Kivu, Democratic Republic of Congo)

    No full text
    This paper presents a thorough description of Nyamulagira's January 2010 volcanic eruption (North Kivu, Democratic Republic of Congo), based on a combination of field observation and ground-based and space-borne data. It is the first eruption in the Virunga Volcanic Province that has been described by a combination of several modern monitoring techniques. The 2010 eruption lasted 26 days and emitted ~45.5 × 106 m3 of lava. Field observations divided the event into four eruptive stages delimited by major changes in effusive activity. These stages are consistent with those described by Pouclet (1976) for historical eruptions of Nyamulagira. Co-eruptive signals from ground deformation, seismicity, SO2 emission and thermal flux correlate with the eruptive stages. Unambiguous pre-eruptive ground deformation was observed 3 weeks before the lava outburst, coinciding with a small but clear increase in the short period seismicity and SO2 emission. The 3 weeks of precursors contrasts with the only precursory signal previously recognized in the Virunga Volcanic Province, the short-term increase of tremor and long period seismicity, which, for example, were only detected less than 2 h prior to the 2010 eruption. The present paper is the most detailed picture of a typical flank eruption of this volcano. It provides valuable tools for re-examining former-mostly qualitative-descriptions of historical Nyamulagira eruptions that occurred during the colonial period. © 2013 Springer-Verlag Berlin Heidelberg
    corecore