14,000 research outputs found

    Gap modification of atomically thin boron nitride by phonon mediated interactions

    Get PDF
    A theory is presented for the modification of bandgaps in atomically thin boron nitride (BN) by attractive interactions mediated through phonons in a polarizable substrate, or in the BN plane. Gap equations are solved, and gap enhancements are found to range up to 70% for dimensionless electron-phonon coupling \lambda=1, indicating that a proportion of the measured BN bandgap may have a phonon origin

    Substrate-induced band gap opening in epitaxial graphene

    Get PDF
    Graphene has shown great application potentials as the host material for next generation electronic devices. However, despite its intriguing properties, one of the biggest hurdles for graphene to be useful as an electronic material is its lacking of an energy gap in the electronic spectra. This, for example, prevents the use of graphene in making transistors. Although several proposals have been made to open a gap in graphene's electronic spectra, they all require complex engineering of the graphene layer. Here we show that when graphene is epitaxially grown on the SiC substrate, a gap of ~ 0.26 is produced. This gap decreases as the sample thickness increases and eventually approaches zero when the number of layers exceeds four. We propose that the origin of this gap is the breaking of sublattice symmetry owing to the graphene-substrate interaction. We believe our results highlight a promising direction for band gap engineering of graphene.Comment: 10 pages, 4 figures; updated reference

    UVB radiation induced effects on cells studied by FTIR spectroscopy

    Full text link
    We have made a preliminary analysis of the results about the eVects on tumoral cell line (lymphoid T cell line Jurkat) induced by UVB radiation (dose of 310 mJ/cm^2) with and without a vegetable mixture. In the present study, we have used two techniques: Fourier transform infrared spectroscopy (FTIR) and flow cytometry. FTIR spectroscopy has the potential to provide the identiWcation of the vibrational modes of some of the major compounds (lipid, proteins and nucleic acids) without being invasive in the biomaterials. The second technique has allowed us to perform measurements of cytotoxicity and to assess the percentage of apoptosis. We already studied the induction of apoptotic process in the same cell line by UVB radiation; in particular, we looked for correspondences and correlations between FTIR spetroscopy and flow cytometry data finding three highly probable spectroscopic markers of apoptosis (Pozzi et al. in Radiat Res 168:698-705, 2007). In the present work, the results have shown significant changes in the absorbance and spectral pattern in the wavenumber protein and nucleic acids regions after the treatments

    Linear Protection Schemes Analysis in Scattered Placement Fiber-To-The Home-Passive Optical Network Using Customer Access Protection Unit Solution

    Get PDF
    <STRONG>Problem statement:</STRONG> This study highlights on restoration scheme proposed against failure in working line at the drop region for Fiber-To-The Home (FTTH) with a Passive Optical Network (PON). Whereas PON is a system that brings optical fiber cable and signals all or most of the way to the end user.<STRONG> Approach:</STRONG> Survivability scheme against failure is focused on scattered residence architectures and it is applied in the ring and tree topology respectively by means of Customer Access Protection Unit (CAPU). CAPU will be installed before the ONU and ensure the signal will find the alternative path when failure occurs at the specific line. Our proposal scheme is low cost and applicable to any residence architecture. The advantage of this scheme is the failure at fiber line can be recovered until three levels to make sure the optic signal flow continuously to avoid any application disturbance. Two type of restoration scheme is proposed by means of linear protection (tree) and migrated protection (ring). FTTH based network design is simulated by using Opti System 7.0 in order to investigate the power output and BER performance at each node in the tree and ring protection scheme in scattered placement. This study we perform an analysis on linear protection scheme that consisting of two model a) Line to Line (L2L) protection and CAPU to CAPU (C2C) or Shared protection. However the migration of tree to ring topology to enable the signal flow continuously in the case of failure occurs specifically in random or scattered placement topology has been highlighted in our previous publication. <STRONG>Results:</STRONG> The signal will be divided into section; drop and pass through and the ratio is significant to determine the number of user allowed and achievable distance. Output power for optical nodes could be slightly improved by varying the pass through and drop signal ratio. <STRONG>Conclusion:</STRONG> Our proposal is the first reported up to this time in which the upstream signal flows in anticlockwise in ring topology when the restoration scheme activated

    Multi-Photon Signals from Composite Models at LHC

    Full text link
    We analyze the collider signals of composite scalars that emerge in certain little Higgs models and models of vectorlike confinement. Similar to the decay of the pion into photon pairs, these scalars mainly decay through anomaly-induced interactions into electroweak gauge bosons, leading to a distinct signal with three or more photons in the final state. We study the standard model backgrounds for these signals, and find that the LHC can discover these models over a large range of parameter space with 30 fb−1^{-1} at 14 TeV. An early discovery at the current 7 TeV run is possible in some regions of parameter space. We also discuss possibilities to measure the spin of the particles in the γγ\gamma \gamma and ZγZ\gamma decay channels.Comment: 18 pages, LaTe

    On stable higher spin states in Heterotic String Theories

    Full text link
    We study properties of 1/2 BPS Higher Spin states in heterotic compactifications with extended supersymmetry. We also analyze non BPS Higher Spin states and give explicit expressions for physical vertex operators of the first two massive levels. We then study on-shell tri-linear couplings of these Higher Spin states and confirm that BPS states with arbitrary spin cannot decay into lower spin states in perturbation theory. Finally, we consider scattering of vector bosons off higher spin BPS states and extract form factors and polarization effects in various limits.Comment: 38 page

    Derivation of Del180 from sediment core log data\u27 Implications for millennial-scale climate change in the Labrador Sea

    Get PDF
    Sediment core logs from six sediment cores in the Labrador Sea show millennial-scale climate variability during the last glacial by recording all Heinrich events and several major Dansgaard-Oeschger cycles. The same millennial-scale climate change is documented for surface water ÎŽ18O records of Neogloboquadrina pachyderma (left coiled); hence the surface water ÎŽ18O record can be derived from sediment core logging by means of multiple linear regression, providing a paleoclimate proxy record at very high temporal resolution (70 years). For the Labrador Sea, sediment core logs contain important information about deepwater current velocities and also reflect the variable input of ice-rafted debris from different sources as inferred from grain-size analysis, the relation of density and P wave velocity, and magnetic susceptibility. For the last glacial, faster deepwater currents, which correspond to highs in sediment physical properties, occurred during iceberg discharge and lasted from several centuries to a few millennia. Those enhanced currents might have contributed to increased production of intermediate waters during times of reduced production of North Atlantic Deep Water. Hudson Strait might have acted as a major supplier of detrital carbonate only during lowered sea level (greater ice extent). During coldest atmospheric temperatures over Greenland, deepwater currents increased during iceberg discharge in the Labrador Sea, then surface water freshened shortly thereafter, while the abrupt atmospheric temperature rise happened after a larger time lag of ≄ 1 kyr. The correlation implies a strong link and common forcing for atmosphere, sea surface, and deep water during the last glacial at millennial timescales but decoupling at orbital timescales

    An optical supernova associated with the X-ray flash XRF 060218

    Full text link
    Long-duration gamma-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefore GRB-supernovae were thought to be rare events. Whether X-ray flashes - analogues of GRBs, but with lower luminosities and fewer gamma-rays - can also be associated with supernovae, and whether they are intrinsically 'weak' events or typical GRBs viewed off the axis of the burst, is unclear. Here we report the optical discovery and follow-up observations of the type Ic supernova SN 2006aj associated with X-ray flash XRF 060218. Supernova 2006aj is intrinsically less luminous than the GRB-supernovae, but more luminous than many supernovae not accompanied by a GRB. The ejecta velocities derived from our spectra are intermediate between these two groups, which is consistent with the weakness of both the GRB output and the supernova radio flux. Our data, combined with radio and X-ray observations, suggest that XRF 060218 is an intrinsically weak and soft event, rather than a classical GRB observed off-axis. This extends the GRB-supernova connection to X-ray flashes and fainter supernovae, implying a common origin. Events such as XRF 060218 are probably more numerous than GRB-supernovae.Comment: Final published versio

    Influence of a knot on the strength of a polymer strand

    Full text link
    Many experiments have been done to determine the relative strength of different knots, and these show that the break in a knotted rope almost invariably occurs at a point just outside the `entrance' to the knot. The influence of knots on the properties of polymers has become of great interest, in part because of their effect on mechanical properties. Knot theory applied to the topology of macromolecules indicates that the simple trefoil or `overhand' knot is likely to be present with high probability in any long polymer strand. Fragments of DNA have been observed to contain such knots in experiments and computer simulations. Here we use {\it ab initio} computational methods to investigate the effect of a trefoil knot on the breaking strength of a polymer strand. We find that the knot weakens the strand significantly, and that, like a knotted rope, it breaks under tension at the entrance to the knot.Comment: 3 pages, 4 figure

    A Trial of Early Antiretrovirals and Isoniazid Preventive Therapy in Africa

    Get PDF
    BACKGROUND: In sub-Saharan Africa, the burden of human immunodeficiency virus (HIV)-associated tuberculosis is high. We conducted a trial with a 2-by-2 factorial design to assess the benefits of early antiretroviral therapy (ART), 6-month isoniazid preventive therapy (IPT), or both among HIV-infected adults with high CD4+ cell counts in Ivory Coast. METHODS: We included participants who had HIV type 1 infection and a CD4+ count of less than 800 cells per cubic millimeter and who met no criteria for starting ART according to World Health Organization (WHO) guidelines. Participants were randomly assigned to one of four treatment groups: deferred ART (ART initiation according to WHO criteria), deferred ART plus IPT, early ART (immediate ART initiation), or early ART plus IPT. The primary end point was a composite of diseases included in the case definition of the acquired immunodeficiency syndrome (AIDS), non-AIDS-defining cancer, non-AIDS-defining invasive bacterial disease, or death from any cause at 30 months. We used Cox proportional models to compare outcomes between the deferred-ART and early-ART strategies and between the IPT and no-IPT strategies. RESULTS: A total of 2056 patients (41% with a baseline CD4+ count of ≄500 cells per cubic millimeter) were followed for 4757 patient-years. A total of 204 primary end-point events were observed (3.8 events per 100 person-years; 95% confidence interval [CI], 3.3 to 4.4), including 68 in patients with a baseline CD4+ count of at least 500 cells per cubic millimeter (3.2 events per 100 person-years; 95% CI, 2.4 to 4.0). Tuberculosis and invasive bacterial diseases accounted for 42% and 27% of primary end-point events, respectively. The risk of death or severe HIV-related illness was lower with early ART than with deferred ART (adjusted hazard ratio, 0.56; 95% CI, 0.41 to 0.76; adjusted hazard ratio among patients with a baseline CD4+ count of ≄500 cells per cubic millimeter, 0.56; 95% CI, 0.33 to 0.94) and lower with IPT than with no IPT (adjusted hazard ratio, 0.65; 95% CI, 0.48 to 0.88; adjusted hazard ratio among patients with a baseline CD4+ count of ≄500 cells per cubic millimeter, 0.61; 95% CI, 0.36 to 1.01). The 30-month probability of grade 3 or 4 adverse events did not differ significantly among the strategies. CONCLUSIONS: In this African country, immediate ART and 6 months of IPT independently led to lower rates of severe illness than did deferred ART and no IPT, both overall and among patients with CD4+ counts of at least 500 cells per cubic millimeter. (Funded by the French National Agency for Research on AIDS and Viral Hepatitis; TEMPRANO ANRS 12136 ClinicalTrials.gov number, NCT00495651.)
    • 

    corecore