236 research outputs found

    Typhoon Haiyan Overwash Sediments From Leyte Gulf Coastlines Show Local Spatial Variations With Hybrid Storm and Tsunami Signatures

    Get PDF
    Marine inundation associated with the 5 to 8 m storm surge of Typhoon Haiyan in 2013 left overwash sediments inland on the coastal plains of the northwestern shores of Leyte Gulf, Philippines. The Haiyan overwash deposit provides a modern sedimentary record of storm surge deposition from a Category 5 landfalling typhoon. We studied overwash sediments at two locations that experienced similar storm surge conditions but represent contrasting sedimentological regimes, namely a siliciclastic coast and a mixed siliciclastic-carbonate coast. The contrasting local geology is significantly reflected in the differences in sediment grain size, composition and sorting at the two sites. The Haiyan overwash sediments are predominantly sand and silt and can be traced up to ~ 1.6 km inland, extending farther beyond the previously reported \u3c 300 m inland limit of sedimentation. Sites with similar geology, topographic relief, and overland flow conditions show significant spatial variability of sediment thickness and inland extent. We infer that other local factors such as small-scale variations in topography and the type of vegetation covermight influence the spatial distribution of overwash sediments. The Haiyan overwash deposits exhibit planar stratification, a coarsening upward sequence, a non-systematic landward fining trend, and a sharp depositional (rarely erosional) basal contact with the underlying substrate. Overall, the Haiyan deposits have sedimentologic and stratigraphic characteristics that show a hybrid signature common to both storm and tsunami deposits

    Coral-based proxy calibrations constrain ENSO-driven sea surface temperature and salinity gradients in the Western Pacific Warm Pool

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mohtar, A. T., Hughen, K. A., Goodkin, N. F., Streanga, I., Ramos, R. D., Samanta, D., Cervino, J., & Switzer, A. D. Coral-based proxy calibrations constrain ENSO-driven sea surface temperature and salinity gradients in the Western Pacific Warm Pool. Palaeogeography Palaeoclimatology Palaeoecology, 561, (2021): 110037, doi:10.1016/j.palaeo.2020.110037.Constraining past variability in ocean conditions in the Western Pacific Warm Pool (WPWP) and examining how it has been influenced by the El-Niño Southern Oscillation (ENSO) is critical to predicting how these systems may change in the future. To characterize the spatiotemporal variability of the WPWP and ENSO during the past three decades, we analyzed climate proxies using coral cores sampled from Porites spp. from Kosrae Island (KOS) and Woleai Atoll (WOL) in the Federated States of Micronesia. Coral skeleton samples drilled along the major growth axis were analyzed for oxygen isotopes (δ18Oc) and trace element ratios (Sr/Ca), used to reconstruct sea surface salinity and temperature (SSS and SST). Pseudocoral δ18O time series (δ18Opseudo) were calculated from gridded instrumental observations and compared to δ18Oc, followed by fine-tuning using coral Sr/Ca and gridded SST, to produce age models for each coral. The thermal component of δ18Oc was removed using Sr/Ca for SST, to derive δ18O of seawater (δ18Osw), a proxy for SSS. The Sr/Ca, and δ18Osw records were compared to instrumental SST and SSS to test their fidelity as regional climate recorders. We found both sites display significant Sr/Ca-SST calibrations at monthly and interannual (dry season, wet season, mean annual) timescales. At each site, δ18Osw also exhibited significant calibrations to SSS across the same timescales. The difference between normalized dry season SST (Sr/Ca) anomalies from KOS and WOL generates a zonal SST gradient (KOSWOLSST), capturing the east-west WPWP migration observed during ENSO events. Similarly, the average of normalized dry season δ18Osw anomalies from both sites produces an SSS index (KOSWOLSSS) reflecting the regional hydrological changes. Both proxy indices, KOSWOLSST and KOSWOLSSS, are significantly correlated to regional ENSO indices. These calibration results highlight the potential for extending the climate record, revealing spatial hydrological gradients within the WPWP and ENSO variability back to the end of the Little Ice Age.We also thank the crew of the M/V Alucia for assistance during the 2012 coral drilling expedition to FSM, funded by the Dalio Family Foundation through a WHOI Access to The Sea grant to KAH (#25110104). Geochemical analysis was funded by Singapore Ministry of Education Academic Research Fund Tier-2 (# MOE2016-T2-1016) to NFG and KAH, and by the WHOI Summer Student Fellowship Program (00450400) and Coastal Preservation Network 501c to IMS

    A new Holocene sea-level record for Singapore

    Get PDF
    Relative sea-level (RSL) records from far-field regions distal from ice sheets remain poorly understood, particularly in the early Holocene. Here, we extended the Holocene RSL data from Singapore by producing early Holocene sea-level index points (SLIPs) and limiting dates from a new ~40 m sediment core. We merged new and published RSL data to construct a standardized Singapore RSL database consisting of 88 SLIPs and limiting data. In the early Holocene, RSL rose rapidly from −21.0 to −0.7 m from ~9500 to 7000 cal. yrs. BP. Thereafter, the rate of RSL rise decelerated, reaching a mid-Holocene highstand of 4.0 ± 4.5 m at 5100 cal. yrs. BP, before falling to its present level. There is no evidence of any inflections in RSL when the full uncertainty of SLIPs is considered. When combined with other standardized data from the Malay-Thai Peninsula, our results also show substantial misfits between regional RSL reconstructions and glacial isostatic adjustment (GIA) model predictions in the rate of early Holocene RSL rise, the timing of the mid-Holocene highstand and the nature of late-Holocene RSL fall towards the present. It is presently unknown whether these misfits are caused by regional processes, such as subsidence of the continental shelf, or inaccurate parameters used in the GIA model

    Micropaleontology of the 2013 Typhoon Haiyan Overwash Sediments from the Leyte Gulf, Philippines

    Get PDF
    Coastal geologic records allow for the assessment of long-term patterns of tropical cyclone variability. However, the accuracy of geologic reconstructions of tropical cyclones is limited by the lack of modern analogues. We describe the microfossil (foraminifera and testate amoebae) assemblages contained within overwash sediments deposited by Typhoon Haiyan when it made landfall on the islands of Leyte and Samar in the Philippines on 7 November 2013 as a Category 5 super typhoon. The overwash sediments were transported up to 1.7 km inland at four study sites. The sediments consisted of light brown medium sand in a layer \u3c1 to 8 cm thick. We used Partitioning Around a Medoid (PAM) cluster analysis to identify lateral and vertical changes in the foraminiferal and testate amoebae data. The presence of intertidal and subtidal benthic, and planktic foraminifera that were variably unaltered and abraded identify the microfossil signature of the overwash sediments. Agglutinated mangrove foraminifera and testate amoebae were present within the overwash sediments at many locations and indicate terrestrial scouring by Haiyan\u27s storm surge. PAM cluster analysis subdivided the Haiyan microfossil dataset into two assemblages based on depositional environment: (1) a low-energy mixed-carbonate tidal flat located on Samar Island (Basey transect); and (2) a higher-energy clastic coastline near Tanauan on Leyte Island (Santa Cruz, Solano, and Magay transects). The assemblages and the taphonomy suggest a mixed provenance, including intertidal and subtidal sources, as well as a contribution of sediment sourced from deeper water and terrestrial environments. (C) 2016 Elsevier B.V. All rights reserved

    Cosmological Parameters from Pre-Planck CMB Measurements

    Get PDF
    Recent data from the WMAP, ACT and SPT experiments provide precise measurements of the cosmic microwave background temperature power spectrum over a wide range of angular scales. The combination of these observations is well fit by the standard, spatially flat LCDM cosmological model, constraining six free parameters to within a few percent. The scalar spectral index, n_s = 0.9690 +/- 0.0089, is less than unity at the 3.6 sigma level, consistent with simple models of inflation. The damping tail of the power spectrum at high resolution, combined with the amplitude of gravitational lensing measured by ACT and SPT, constrains the effective number of relativistic species to be N_eff = 3.28 +/- 0.40, in agreement with the standard model's three species of light neutrinos.Comment: 5 pages, 4 figure

    The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey

    Get PDF
    We present a catalog of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 GHz and/or 218 GHz in the 2008 Southern survey. Flux densities span 14-1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two sub-populations: 167 radio galaxies powered by central active galactic nuclei (AGN), and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97% of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogs. When combined with flux densities from the Australian Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index of 3.7+0.62-0.86, and includes both local galaxies and sources with redshifts as great as 5.6. Dusty sources with no counterpart in existing catalogs likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.Comment: 13 pages, 8 figures, 4 table

    Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements

    Full text link
    For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w=−1w=-1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density ΩΛ\Omega_\Lambda confirms other measurements from supernovae, galaxy clusters and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.Comment: 4 pages, 3 figures; replaced with version accepted by Physical Review Letters, added sentence on models with non-standard primordial power spectr
    • …
    corecore