The University of Southern Mississippi The Aquila Digital Community

Faculty Publications

8-1-2017

Typhoon Haiyan Overwash Sediments From Leyte Gulf Coastlines Show Local Spatial Variations With Hybrid Storm and Tsunami Signatures

Janneli Lea A. Soria Nanyang Technological University

Adam D. Switzer Nanyang Technological University, aswitzer@ntu.edu.sg

Jessica E. Pilarczyk University of Southern Mississippi

Fernando P. Siringan *University of the Phillippines*

Nicole S. Khan St. Petersburg Coastal and Marine Science Center

See next page for additional authors

Follow this and additional works at: https://aquila.usm.edu/fac_pubs Part of the <u>Oceanography and Atmospheric Sciences and Meteorology Commons</u>

Recommended Citation

Soria, J. L., Switzer, A. D., Pilarczyk, J. E., Siringan, F. P., Khan, N. S., Fritz, H. M. (2017). Typhoon Haiyan Overwash Sediments From Leyte Gulf Coastlines Show Local Spatial Variations With Hybrid Storm and Tsunami Signatures. *Sedimentary Geology*, 358, 121-138. Available at: https://aquila.usm.edu/fac_pubs/15220

This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.

Authors

Janneli Lea A. Soria, Adam D. Switzer, Jessica E. Pilarczyk, Fernando P. Siringan, Nicole S. Khan, and Hermann M. Fritz

- 1 Typhoon Haiyan overwash sediments from Leyte Gulf coastlines show local
- 2 spatial variations with hybrid storm and tsunami signatures
- 3
- ⁴ Janneli Lea A. Soria^{1,2}, Adam D. Switzer^{1,2}, Jessica E. Pilarczyk³, Fernando P.
- ⁵ Siringan⁴, Nicole S. Khan⁵, Hermann M. Fritz⁶
- 6
- ⁷ ¹ Asian School of the Environment, Nanyang Technological University, Singapore
- 8 639798
- 9 ² Earth Observatory of Singapore, Nanyang Technological University, Singapore
- 10 639798
- ³ Division of Marine Science, School of Ocean Science and Technology,
- 12 University of Southern Mississippi, Stennis Space Center, MS 39529 USA
- ⁴ Marine Science Institute, University of the Philippines, Diliman, Quezon City,
- 14 Philippines 1101
- ⁵ United States Geological Survey, St. Petersburg Coastal and Marine Science
- 16 Center, St. Petersburg, Florida 33701-4846
- ⁶ School of Civil and Environmental Engineering, Georgia Institute of Technology,
- 18 Atlanta, GA 30332
- 19
- 20 Corresponding Author:
- 21 Adam Switzer
- 22 Earth Observatory of Singapore, Nanyang Technological University 639798,
- 23 Singapore
- 24 Email: <u>aswitzer@ntu.edu.sg</u>

25 Abstract

26 Marine inundation associated with the 5 to 8 m storm surge of Typhoon Haiyan in 27 2013 left overwash sediments inland on the coastal plains of the northwestern 28 shores of Leyte Gulf, Philippines. The Haivan overwash deposit provides a 29 modern sedimentary record of storm surge deposition from a Category 5 30 landfalling typhoon. We studied overwash sediments at two locations that 31 experienced similar storm surge conditions but represent contrasting 32 sedimentological regimes, namely a siliciclastic coast and a mixed siliciclastic-33 carbonate coast. The contrasting local geology is significantly reflected in the 34 differences in sediment grain size, composition and sorting at the two sites. The 35 Haiyan overwash sediments are predominantly sand and silt and can be traced up 36 to ~ 1.6 km inland, extending farther beyond the previously reported < 300 m 37 inland limit of sedimentation. Sites with similar geology, topographic relief, and 38 overland flow conditions show significant spatial variability of sediment thickness 39 and inland extent. We infer other local factors such as small-scale variation in 40 topography and the type of vegetation cover might influence the spatial 41 distribution of overwash sediments. The Haiyan overwash deposits exhibit planar 42 stratification, a coarsening upward sequence, non-systematic landward fining 43 trend, and a sharp depositional (rarely erosional) basal contact with the underlying substrate. Overall, the Haiyan deposits have sedimentologic and stratigraphic 44 45 characteristics that show a hybrid signature common to both storm and tsunami 46 deposits.

47

48 Keywords: Storm deposit, tsunami deposit, siliciclastic, carbonate, topography,
49 vegetation

50 1. Introduction

51 Overwash associated with storm surges during landfalling cyclones often rework, 52 erode and transport near-shore sediments onto low-lying coastal plains (e.g., 53 Leatherman, 1981; Morton and Sallenger, 2003; Williams and Flanagan, 2009). 54 The overwash sediments are commonly recognized as anomalous sand layers 55 found in the sedimentary environments of low-energy coastal settings, including 56 coastal lakes, swamps and back barrier tidal marshes (e.g., Leatherman and 57 Williams, 1977; Liu and Fearn, 1993; Buynevich et al., 2004; Donnelly et al., 58 2004). Overwash processes also create depositional landforms on back beach 59 environments. Depending on the elevation of water surface level relative to the 60 dune or beach ridge height, along with the extent and continuity of foredune gaps, 61 overwash can result in washover fans that are isolated or merge to form a 62 washover terrace morphology (Morton and Sallenger, 2003).

63

64 Similarly, tsunamis also produce overwash and associated deposits. Although the 65 hydrodynamics of a tsunami can be distinctly different from that of a storm surge 66 in terms of overland flow velocity, wave set-up, wave period, and inland extent 67 (e.g., Switzer and Jones, 2008; Goto et al., 2009; Watanabe et al., 2017), the 68 associated overwash sediments often show similar sedimentological characteristics 69 (e.g., Kortekaas, 2002; Kortekaas and Dawson, 2007; Switzer and Jones, 2008). In 70 a few cases, however, multi-proxy approaches using sedimentology, microfossils, 71 geochemistry, archaeology, and paleoecology have successfully differentiated a 72 tsunami from a storm deposit in the geologic record (e.g., Nanayama et al., 2000; 73 Goff et al., 2004; Kortekas and Dawson, 2007; Morton et al., 2007; Ramírez-Herrera et al., 2012). Attributing a deposit to a certain event type, in particular 74

75 between storm and tsunami, needs careful consideration of the complex

76 interactions between the hydrodynamic processes, the local conditions that

77 determine the overwash sedimentation patterns, and post-depositional preservation

78 (e.g., Switzer and Jones, 2008; Otvos, 2011).

79

80 The Typhoon Haiyan overwash deposit (Table 1) represents a rare modern 81 sedimentary record of an intense landfalling cyclone with a bore-like storm surge. 82 On 8 November 2013, Typhoon Haiyan (Fig. 1) generated a storm surge with a 83 flow depth and inundation distance similar to other recent intense storms such as 84 hurricanes Katrina, Rita, and Ike, and Cyclone Yasi (Table 2). Notably, Typhoon 85 Haiyan's bore-like storm surge is unusual compared to the more commonly 86 reported gradual rise and prolonged inundation associated with comparable storms 87 (Mikami et al., 2016). The deep, high-velocity flow, and short inundation duration 88 of Haiyan's storm surge are more commonly attributed to tsunami flooding 89 hydrodynamics (e.g., Morton et al., 2007; Switzer and Jones, 2008) (Tables 3-5). 90 The sedimentary deposit associated with Typhoon Haiyan provides a contrast to 91 the modern storm deposit record, which is dominated by a higher frequency of 92 storm surges characterized by a slower and longer duration of flooding (Table 2). 93

In this study, we describe the physical sedimentology of overwash sediments
resulting from the Typhoon Haiyan storm surge across two nearby coastal plains
(Fig. 2a) that have contrasting topographic relief and sedimentological regimes.
The Basey coast has irregular topography characterized by raised carbonate
platforms and a narrow beach consisting of mixed siliciclastic-carbonate
sediments. In contrast, Tanauan is characterized by a broad, subdued coastal plain

100 (< 3 m in elevation) that is underlain by siliciclastic sediments. By investigating 101 Haivan overwash sediments from two nearby sites that experienced similar storm 102 surge characteristics, we are able to evaluate whether local topography and 103 geology has a dominant control on the physical sedimentology and the spatial 104 distribution of overwash sediments. In addition, we compared the Haiyan 105 overwash sediments to those from recent storms such as hurricanes Katrina, Rita, 106 Ike, and Yasi (Table 2) and tsunamis such as the 2011 Tohoku, 2006 West Java, 107 2004 Indian Ocean (Tables 3-5) to determine the influence of the bore-like 108 inundation to the physical characteristics and distribution of the Haiyan deposit. 109

110 2. Typhoon Haiyan

111 Typhoon Haiyan, locally known as Yolanda, was a Category 5 typhoon according 112 to the Saffir-Simpson Hurricane Scale when it made landfall on Leyte Island (Fig. 113 1). Typhoon Haiyan ranks as the most intense and fastest moving storm at landfall 114 worldwide (Lin et al., 2014; Takagi and Esteban, 2016). The areas surrounding 115 San Pedro Bay in Leyte Gulf experienced the most extensive infrastructure 116 damage and highest death toll from Typhoon Haiyan due to the high storm surge 117 and superimposed storm waves (Tajima et al., 2014; Mas et al., 2015). The storm 118 surge in San Pedro Bay was initially characterized by a sea-level drawdown of ~ 2 119 m that exposed wide expanses of the gently sloping subtidal sand flats along the 120 northern shores of the bay (Soria et al., 2016). Soon after Typhoon Haiyan's 121 landfall on Leyte Island, the storm surge came rapidly onshore as a fast-moving 122 wall of water exceeding 5 m in height (Supplementary Fig. S1). Wave 123 contributions raised high-water mark indicators to almost 8 m in Tacloban and 124 Palo (Soria et al., 2016). The peak water levels lasted for 30 to 45 minutes before

125 receding within 1 to 2 hours. The inundation duration was short, but involved three 126 wave sets based on corroborated survivor accounts and storm surge simulations 127 (Soria et al., 2016). On the northern shore of San Pedro Bay, storm surge flooding 128 at Basey reached ~800 m inland; whereas, on the western shore near Tanauan, 129 flooding reached up to 2 km inland. The coastal inundation caused shoreline 130 changes, including beach erosion and inland sedimentation (Supplementary Figs. 131 S2-S4). Beach scouring and exposed tree roots following Typhoon Haiyan clearly 132 indicate beach erosion at several locations around Leyte Gulf (Supplementary 133 Figs. S3a-c, S4a-b). Conversely, the washover terrace that was formed along the 134 Tanauan coast illustrates inland sedimentation (Supplementary Fig. S2b-c). 135

136 **3. Study Area**

San Pedro Bay is a ~20 km wide by ~25 km long embayment that opens to the
larger Leyte Gulf to the south (Fig. 1 inset). To the northwest, San Pedro Bay
narrows into the San Juanico Strait that separates the islands of Leyte and
Samar. San Pedro Bay is relatively shallow (maximum water depth of ~ 20 m,
average water depth of ~ 10 m) and has an average tidal range of 0.5 m (PMSL,
2016).

143

We focused our study on two locations in San Pedro Bay that represent contrasting
coastal morphology and geology (Fig. 2a). The irregularly steep karstic terrain of
the Oligocene to Miocene age limestones (Aurelio and Peña, 2002) occurs on the
northern and eastern shores of San Pedro Bay in the area of Basey (Fig. 2a,c).
Here, the rocky limestone headlands bound small embayments with sandy pocket
beaches and are surrounded by narrow fringing reefs (Fig. 2c). In contrast, the

western coast of Leyte between Tacloban and Tanauan is characterized by a wide, low elevation (<3 m) coastal plain that consists of beach ridges, a sand spit and patches of mangrove stands (Fig. 2d). The coastal plains consist primarily of accumulations of unconsolidated siliciclastic sediments sourced from the interior highlands that are composed of Cretaceous ultramafic-mafic igneous rocks capped with pelagic sedimentary sequences and patches of Miocene-Pliocene volcanic centers and sedimentary rocks (Aurelio and Peña, 2002; Suerte et al., 2005).

158 **4. Methods**

159 4.1. Transect-scale sampling

160 The inland distribution of sediments from Typhoon Haiyan were mapped along the 161 coastline of San Pedro Bay in January 2014 along four transects at two locations 162 that represent contrasting depositional regimes (Fig. 2a). One transect (Ba) was 163 located on the mixed carbonate-siliciclastic coast of Basey (Fig. 2c) and three 164 transects (Sc, So and Ma) were located on the siliciclastic coast of Tanauan (Fig. 165 2d). Each transect extended from the shore to the landward limit of the Haiyan 166 deposit, the inland extent varied from 400 m in Basey to 1.8 km in Tanauan. The 167 transects cover back beach environments, including stands of Nypa fruticans (a 168 mangrove-associated palm species), patches of grassland, coconut groves, and rice 169 fields. We sampled the Haiyan deposit along each transect by means of a hand 170 gouge auger down to a depth of ~ 20 cm or by a shovel down to depths of ~ 10 cm. 171 In total we collected samples at 44 sites; one sediment sample from the Typhoon 172 Haiyan deposit and one sample from the underlying soil (not sampled in So 1-6). 173 We used a handheld GPS to mark all the sampling locations and focused our study 174 on the overwash deposits from the back beach environments, which were

175 minimally influenced by marine processes after the storm. Our surveys were 176 limited to areas that were accessible and had minimal disturbance from retrieval 177 operations and rehabilitation efforts following Typhoon Haiyan, which resulted in 178 sampling points that were patchy and at irregular distances. The transects 179 correspond to those defined in the micropaleontological study of Pilarczyk et al. 180 (2016). Based on the micropaleontological assemblages contained within the 181 Typhoon Haiyan overwash sediments, Pilarczyk et al. (2016) established a 182 nearshore to offshore sediment source for the Haiyan deposit. 183

184 4.2. Trench-scale sampling

185 For a detailed description of the sedimentary features of the Haiyan deposits, a 186 follow-up field survey was conducted in May 2014. An array of seven shallow 187 trenches were excavated in two transects oriented perpendicular to the coast 188 (Fig. 2b), starting from the terminus of a sandy landform identified on the post-189 typhoon Haiyan satellite image to about 100 m landward (Fig. S2b,c). The 190 trenches were located on a shallow grass-covered depression adjacent to 191 transect Ma that, at the time of the initial survey, had ponded water about 50 cm 192 deep (Fig. 2b). The trench samples were labelled as MP to distinguish them 193 from the samples taken using an auger along transect Ma. The trenches have 194 varying depths depending on the position of the water table and ranged from 25 195 to 50 cm below the surface. At each trench, we noted the thickness of the 196 Haiyan deposit, the nature of the basal contact with the underlying land surface, 197 and other sedimentary structures such as laminations or apparent grading. 198 Samples from the Haiyan deposit and the pre-Haiyan soil were taken at 2-cm 199 intervals for subsequent sedimentologic analyses.

4.3. Surveying 200

201	All sample sites were surveyed and topographic elevations along the transects
202	were determined simultaneously with a Haiyan high-water mark survey in
203	January 2014 (Soria et al., 2016) using a differential Trimble global positioning
204	system (dGPS) rover connected via Bluetooth to a Lasercraft XLRic laser range
205	finder (Fritz et al., 2012; Soria et al., 2016). The elevation measurements were
206	differentially corrected with our daily setup of the local Ashtech TM base station
207	and corrected for tide level at the time of the survey on the basis of tide
208	predictions provided by XTide 2 © open-source software of Flater (1998). The
209	typhoon-damaged tide station in Tacloban Port was visited during the survey
210	and reference points were surveyed to align the vertical datum with mean sea
211	level at the local tide station. The tide recordings for Tacloban Port were
212	provided by the National Mapping and Resources Information Agency
213	(NAMRIA) of the Republic of the Philippines. The post-processed differentially
214	corrected position and elevation measurements with respect to MSL have an
215	individual confidence of ± 0.1 m.
216	
217	4.4. Sedimentologic analyses
218	4.4.1. Organic matter and carbonate content
219	About 1 to 2 g of sediment was subsampled from each sample to determine both
220	the organic matter and carbonate content following the loss on ignition method

the organic matter and carbonate content following the loss-on-ignition method

221 (Dean, 1974; Heiri et al., 2001). The sediments were placed in pre-weighed

222 ceramic crucibles that were dried in an oven at 105°C for up to 2 hours (Dean,

- 223 1974). The samples and crucibles were allowed to cool to room temperature,
- 224 and then were weighed to obtain the initial dry weight of the sediments. The

225 samples in crucibles were sequentially heated in a muffle furnace, first at 550 °C 226 for 4 hours to burn the organic matter component, and then at 950 °C for 1 hour 227 to burn the carbonate component (Heiri et al., 2001). After each heating stage, 228 the samples were allowed to cool at room temperature and then weighed. The 229 weight lost from the initial dry weight at each heating stage corresponds 230 accordingly to the relative organic matter and carbonate content. We followed 231 the calculations given by Heiri et al. (2001) to determine the relative amounts of 232 organic matter and carbonate component.

233

4.4.2. Grain size distribution

235 We used two different optical techniques with similar grain size measuring 236 principles to determine the sediment grain size distribution of the samples. After 237 visually estimating the modal and maximum grain size using a grain size chart 238 comparator, fine-grained sediments (< 2 mm diameter) were subjected to laser 239 diffraction particle size analysis with a Malvern Mastersizer 2000; whereas, 240 coarse-grained sediments (> 2 mm diameter) were subjected to digital imaging 241 using a Retsch Technology Camsizer®. The Camsizer can measure grain size, 242 which corresponds to the cross-sectional area of the particles in the image and is 243 reported as the diameter of a circle of equivalent area, which is similar to the 244 grain size measuring principle of the laser particle analyzer (Switzer and Pile, 245 2015). A total of 141 samples composed mostly of mud to fine sand, including 246 all the samples taken from the four transects (Ba, Sc, So and Ma), all samples 247 from the three trenches (MP 1,2,5), and the pre-Haiyan soil samples in four 248 trenches (MP 3,4,6,7), were analysed using the Malvern Mastersizer. In 249 contrast, 28 samples corresponding to the Typhoon Haiyan deposit from

trenches MP3, MP4, MP6, and MP7, which are predominantly sand and contain
granules, were analysed using the Camsizer. For the samples that were
introduced to the Malvern Mastersizer, ~1 g of sediment was treated with 15%
H₂O₂ to remove organics and 10% hydrochloric acid (HCl) to remove carbonate
fragments. The samples were rinsed with distilled water before conducting the
grain size analysis using laser diffraction.

256

257 For the coarse sand Typhoon Haiyan deposits that were analysed using the 258 Camsizer, any organic debris and carbonate fragments that were large enough to 259 be seen with the naked eye were manually removed using forceps instead of 260 being dissolved in chemicals. The sediments were rinsed with distilled water to 261 remove salts, enhancing sediment dispersion. The sediments were successively 262 oven dried at 50°C, and about 50 to 100 g of dry subsamples were introduced on 263 the Retsch Technology CAMSIZER® for grainsize analyses. We note that the 264 mixed siliciclastic-carbonate sediments of Basey (i.e., LOI > 10% carbonate) 265 were not treated with HCl. Acid treatment practically ignores the inherent bulk 266 sediment composition and preferentially removes the carbonate grains, which 267 may introduce artefacts in the granulometric parameters that are usually used in 268 discriminating an overwash deposit from the background soil (e.g., Szczucinski 269 et al. 2012; Gouramanis et al., 2017).

270

The grain size data were collectively run through the open-source program

GRADISTAT version 8.0 (Blott and Pye, 2001) to generate statistical grain size

- distributions. The fraction of sediment within each size category (e.g., clay,
- very coarse silt, medium sand) along with the logarithmic (Folk and Ward,

275 1957) mean, median, mode, sorting, and skewness of each sample were used to
276 establish the vertical and spatial variations of the Haiyan deposits. All sediment
277 distribution results are listed in Supplementary Tables S1-S11.

278

279 **5. Results**

280 5.1. Haiyan overwash sediments from Basey

281 In the field, the Haiyan overwash sediments from Basey were distinguished 282 from the pre-Haivan soil by color. The stratigraphic contact between the 283 overwash sediments and the underlying layer varied in degree of prominence 284 depending on the coastal environment and distance from the shore. The Haiyan 285 sediments in the coconut grove within 200 m from the shore are grey (10YR 286 6/1) and overlie very dark grey (10YR 3/1), organic-rich, finer-grained pre-287 Haiyan soil (Fig. 3a). In the coconut grove, the nature of the contact between 288 the Haiyan sediments and the underlying soil was generally sharp and very 289 pronounced. Farther inland on the rice paddies, the grey (10YR 5/1) Haiyan 290 sediments overlie a mottled grey (10YR5/1) and brown (10YR 4/3) pre-Haiyan 291 agricultural soil (Fig. 3b), but the stratigraphic contact is less discernable. 292

²⁹³ We observed spatial variations in deposit thickness, grain size, sorting,

skewness, and composition (Fig. 4). The Haiyan overwash sediments consist of

²⁹⁵ silt to fine sand that drapes the beach berm, coconut grove and rice paddies on

the coastal plain nearly 350 m from the shore (Fig. 4i). The thickest deposit was

- ~ 8 cm and is found 30 m from the shore (Fig. 4ii). The Haiyan deposit thins
- ²⁹⁸ rapidly landward of the shoreline and varies in thickness from 1 to 4 cm. Except

299	for Ba 15 and Ba 13, the Haiyan sediments deposited on the berm and coconut
300	grove were coarser (very fine to medium sand, Fig. 4iii), better sorted (1 to 2 ϕ ,
301	Fig. 4iv), and more finely skewed (0.1 to 0.6 ϕ , Fig. 4v), compared to the
302	sediments deposited on the rice paddies farther inland which are silt-size (Fig.
303	4iii), very poorly sorted (>2 ϕ , Fig. 4iv), and coarse skewed (-0.1 to 0.1 ϕ , Fig.
304	4v). With the exception of one sample, Ba8, the sediments closer to the shore
305	also contained $\sim 10\%$ organic matter, whereas the sediments from the rice
306	paddies contained 15% to 20% organic matter (Fig. 4vi). The Typhoon Haiyan
307	deposits contain more than 10% carbonate within \sim 200 m from the shore, but
308	sediments beyond 200 m consistently contain low amounts of carbonate ranging
309	from ~3 % to 8 % (Fig. 4vii).
310	
311	5.2. Haiyan overwash sediments from Tanauan
312	5.2.1. Transect-scale investigations
313	Similar to Basey, the stratigraphic contact between the Haiyan overwash
314	sediments and the pre-Haiyan soil in Tanauan is defined by color, but exhibits
315	varying degrees of prominence. In the Nypa forest and grasslands within 200 m
316	of the shore, the contact between the Haiyan overwash sediments and the
317	underlying soil was pronounced (Fig. 3c). The Haiyan overwash sediments are
318	grey (10YR 5/1) and distinctly different from the very dark brown (10YR $2/2$)
	g(r) (r) (r) (r) (r) (r) (r) (r) (r) (r)
319	underlying pre-Haiyan soil that commonly contain buried upright grasses or

- ³²⁰ root fragments. On the other hand, the contact between the Haiyan overwash
- 321 sediments and the underlying agricultural soil in the rice paddies greater than
- ³²² 400 m from the shore was gradational and started to be obscured by rapid post-
- 323 typhoon vegetation growth (Fig. 3d).

324	The Haiyan overwash sediments on the silicilastic coast of Tanauan display
325	notable spatial variations, but not necessarily systematic trends (Fig. 5a-c).
326	Along each of the transects (Sc, So, and Ma), the Haiyan sediments have
327	variable thickness; the thickest accumulations of 5 to 7 cm were consistently
328	found in topographic lows such as channels within the mangrove stands (Nypa
329	forests) and depressions (shallow ponds) between 200 to 400 m from the shore
330	(Fig. 5a-c,ii). These thick Haiyan sediments are predominantly grey,
331	moderately- to well-sorted (Fig. 5a-c,iv), fine (3ϕ) to coarse (1ϕ) sand (Figs.5a-
332	c,iii) that contain low amounts of organic matter (<10%; Fig. 5a-c,vi) and
333	carbonate (<1%; Fig. 5a-c,vii). Between 500 m to ~1.6 km inland, rice paddies
334	are blanketed by 1-cm to 3-cm thick accumulations of sediments with mean
335	grain size ranging from silt (5 ϕ) to very fine (4 ϕ) sand (Fig. 5a-c,ii). A micro-
336	topographic depression within the rice paddies resulted in an unusually thick (8
337	cm) Haiyan deposit at Ma10. Collectively, the Haiyan sand sheet within 400 m
338	of the shore is distinctly coarser grained (1 to 3ϕ), better sorted (Fig. 5a-c,iv),
339	and contains <10 % organic matter. This is in contrast to the overwash
340	sediments found greater than 400 m from the shore (Fig. 5a-c,iii-iv).
341	
342	Table 1 shows a comparative summary of the Haiyan overwash deposits
343	observed at our transects as well as previous transects described by Abe et al.
344	(2015) and Brill et al. (2016) in a nearby coastal area. Sedimentary features

- ³⁴⁵ such as planar laminations, and multiple coarsening and fining sequences are
- common across all sites. However, the inland extent of the Haiyan deposit is
- 347 clearly different. The Haiyan sandsheet at Tanauan and Tolosa reached > 100 m
- 348 (Abe et al., 2015) to ~250 m inland (Brill et al., 2016). We mapped the Haiyan

349	overwash deposits and found that it extended farther inland, reaching 900 m
350	(transect Sc) to as much as 1.6 km from the shore (transects So and Ma).
351	
352	5.2.2. Trench-scale investigations
353	Trenches MP4 and MP7 revealed two different sedimentary units that overlie
354	the pre-Haiyan soil surface. In trench MP4, Unit 1 is a ~10 cm thick
355	accumulation of black, magnetite-rich, medium sand (1 to 2 ϕ) that coarsens
356	upwards (Fig. 6). The sands of Unit 1 are moderately sorted with sorting values
357	remaining constant at ~0.75 ϕ (Fig. 6c). Thin planar laminations within the
358	magnetite-rich Unit 1 sand were observed on the shore-perpendicular wall of
359	trench MP7 (Fig. 7a). The planar laminations, however, appear wavy on the
360	shore-parallel trench wall (Fig. 7b). The magnetite-rich sand of Unit 1 is
361	overlain by 12-cm thick, light grey, coarse sand (-1 to 0 ϕ) of Unit 2 (Fig. 6a-b,
362	7a-c). The contact between the two sediment units is very sharp and
363	conformable, except on MP7, which has an erosional contact (Fig. 7b). The
364	base of Unit 2 is characterized by relatively high concentrations of gravel-sized
365	sediments displaying a fining upwards trend (Fig. 6c). At 5 cm from the surface,
366	the initial fining upward sequence shifted to one that is coarsening upward to
367	the surface. In contrast, the vertical grading in trench MP7 is not as complex as
368	in trench MP4. Figure 7d shows the bulk sediment mean grain size in MP7,
369	which indicates a single and consistently coarsening upward sequence. Despite
370	the coarsening upward trend in grain size, sorting remains uniform, and the
371	entire sequence is composed of moderately sorted sediments (Figs. 6c, 7d). The
372	laminated, magnetite-rich basal unit (Unit 1) did not persist beyond 50 m from
373	the shore. Inland trenches MP6 and MP1 revealed thinner Haiyan deposits,

which consist of a grey (10YR 5/1), medium sand (1.5 to 2 φ) that is relatively
finer than Unit 1 and Unit 2 in the more seaward trenches MP4 and MP7 (Fig.
8).

377

378 **6. Discussion**

379 6.1. Textural and compositional variability of the Haiyan overwash deposit The Haiyan overwash sediments close to the shores in Tanauan and in Basey 380 381 exhibit notable differences in sediment composition, texture, and stratification. At 382 Basey (Fig. 4), the Typhoon Haiyan sediments are generally characterized by a 383 massive, poorly sorted, fine sand that contains carbonate material ranging from 5 384 to 24%, including foraminifera, and fragments of mollusks and corals (Pilarczyk et 385 al., 2016). In contrast, the Typhoon Haivan sediments from Tanauan (Fig. 5) are 386 moderately to well-sorted, medium to coarse sand containing very low carbonate 387 concentrations of <3%. Heavy minerals are relatively abundant and accumulate in 388 layers (Figs. 6a,7a-b). Thin planar laminations were also visible within the deposit 389 (Fig. 7a,b).

390

391 The significant disparity in the carbonate content between the Haiyan overwash 392 sediments from Basey and Tanauan is indicative of the sediment source. Carbonate 393 sediments are naturally readily available in the mixed carbonate-siliciclastic coast 394 of Basey, but rare in the non-carbonate, siliciclastic coast of Tanauan (Aurelio and 395 Peña, 2002; Suerte et al., 2005). Similarly, Pilarczyk et al. (2016) reported two 396 distinct foraminiferal assemblages corresponding to the two contrasting 397 environments. The overwash sediments on the mixed carbonate-siliciclastic coast 398 contained significantly higher concentrations of calcareous foraminifera (45-6320

- foraminifera per 5 cm³) compared to the overwash sediments on the siliciclastic
 coast of Tanauan that contained only 5-80 foraminifera per 5 cm³.

402	At both sites, however, the most inland Haiyan overwash sediments share
403	commonalities in grain size, texture, and composition (Figs. 4,5). The sediments
404	are very poorly sorted, ranging from silt to very fine sand, and contain a higher
405	amount of organic matter ranging from 10 to 35%, and lower concentrations of
406	carbonate at $< 5\%$. The Haiyan overwash sediments occur as anomalous sand
407	layers over muddy sediments up to distances of 200 m (Basey, Fig. 4,ii) to 400 m
408	(Tanauan, Fig. 5a-c,ii) from the shore, which is less than the inundation limit.
409	Beyond 200 m (Basey, Fig. 4,ii) to 400 m (Tanauan, Fig. 5a-c,ii), granulometry
410	does not reliably discriminate the overwash sediments from the pre-storm
411	sedimentary layers. As such, the textural definition of overwash sediments as
412	"anomalous sand layers" may not necessarily be the most appropriate term,
413	particularly for sediments deposited closest to the inundation limit. The distal
414	deposit of Typhoon Haiyan is mud-dominated and similar to the Hurricane Rita
415	deposit (Williams, 2009). In addition, the distinct textural and compositional
416	signatures associated with the Typhoon Haiyan deposit closest to the shore seemed
417	to be less evident inland. The notable sedimentologic differences associated with
418	landward distance are consistent with the established distance-related
419	micropaleontologic clustering reported by Pilarczyk et al. (2016). Concentrations
420	of testate amoebae and small foraminifera were higher in more inland overwash
421	sediments in Basey (> 160 m) and in Tanauan (> 400 m) compared to the
422	overwash sediments found near the shore (Pilarczyk et al., 2016).

424 6.2. Spatial variability in the sedimentation pattern of the Haiyan overwash deposit 425 Another notable difference between the overwash sediments in Tanauan and in 426 Basey is the inland extent. The overwash sediments along transects Sc, So, and 427 Ma in Tanauan reached greater distances inland than the overwash sediments 428 along transect Ba in Basey (Figs. 4,5). The inland extent of overwash sediments is 429 likely to be related to the inundation distance at each site, which is mainly controlled by topographic relief. The low (1 to 2 m), gently sloping terrain in 430 431 Tanauan promoted greater inundation distance to ~ 2 km, but the overwash 432 sediments reached a landward extent of only ~1.6 km (Fig. 5a-c,i-ii). The 433 relatively irregular topography of raised carbonate platforms (3 m) and rice 434 paddies on terraced slopes in Basey limited inland inundation to ~800 m, with 435 overwash sedimentation reaching to ~350 m inland (Fig. 4,i-ii). We argue that 436 given similar surge levels at both sites, the local topography exerts significant 437 control on overland inundation distance and therefore the inland extent of the 438 deposits. Similarly, the differences in the extent and thickness of overwash 439 deposits from Hurricane Ike were attributed to site-specific geomorphology and 440 surge/wave conditions (Williams, 2010; Hawkes and Horton, 2012) (Table 2). The 441 topography-dependent inland extent was also observed in the 2004 tsunami deposit 442 across the affected coasts surrounding the Indian Ocean. The 2004 Indian Ocean 443 tsunami deposit reached a greater inland extent (up to 2 km) along broad, low 444 relief beach-ridge coasts in Thailand (Hori et al., 2007; Jankaew et al., 2008) than 445 the inland extent (350 to 400 m) in narrow, steep beaches in Thailand, Indonesia, 446 India, and Sri Lanka (e.g., Moore et al., 2006; Hawkes et al., 2007; Srinivisalu et 447 al., 2007; Morton et al., 2008; Switzer et al., 2012).

448

449	Even within similar coastal environments, topographic relief, overland flow depth,
450	and inundation extent, the inland extent of the Haiyan deposit differs distinctly
451	between Tanauan and Tolosa (Table 1). Contrary to earlier reports of overwash
452	sedimentation from Typhoon Haiyan extending < 300 m (e.g., Abe et al., 2015;
453	Brill et al., 2016; Watanabe et al., 2017), we documented greater inland extents of
454	900 m to \sim 1.6 km. This suggests that other local conditions beyond the scope of
455	this study may likely contribute to the spatial variations including vegetation (e.g.,
456	Gelfenbaum et al., 2007; Wang and Horwitz, 2007; Watanabe et al., 2017), or
457	perhaps the interaction of multiple waves (e.g., Apotsos et al., 2011). The coastal
458	vegetation cover in Tanauan and Tolosa varies from coconut grove, mangrove
459	stands (Nypa forest), and grasses (including rice). Small-scale topographic changes
460	in each vegetation zone appear to create localized depositional sites (e.g., Apotsos
461	et al., 2011). For example, small channels within the Nypa forest or micro-
462	topographic depressions in the rice paddies (e.g., Ma 10) allowed for thicker
463	accumulations of the Haiyan deposit relative to surrounding areas. Vegetation also
464	affects sedimentation patterns by changing the overland flow conditions. Each
465	vegetation type has a different height and density that results in varying bed shear
466	stress, which in turn can modify overland flow conditions that will lead to
467	variability in the inland extent and thicknesses of overwash deposits (Watanabe et
468	al., 2017). More detailed sediment transport modeling on sediments from the
469	Tanauan transects (Sc, So, Ma, and trenches MP1-7) may provide insights into the
470	relative contributions of these local factors (e.g., Gelfenbaum et al., 2007; Tang
471	and Weiss, 2015).
472	

473 6.3. Sedimentologic indicators of storm surge flow and depositional regimes 474 The two sub-units (Unit 1 and Unit 2) of the Haivan deposit in Tanauan (Figs. 6.7) 475 can be attributed to either different inundation regimes (e.g., Williams, 2009; 476 Hawkes and Horton, 2012) or multiple wave arrivals (e.g., Leatherman and Williams, 1977; Sedgwick and Davis, 2003; Switzer and Jones, 2008). Eyewitness 477 478 accounts and storm surge modeling confirm three wave sets within the duration of 479 Haiyan's storm surge inundation (Soria et al., 2016). Unit 1 and Unit 2 are 480 separated by a sharp, depositional to erosional contacts, which suggests that each 481 unit resulted from different flow regimes. It is possible that Unit 1 and Unit 2 482 resulted from the multiple wave sets during Haiyan inundation, but we cannot 483 attribute an individual unit to a single wave set. There seems to be no one-to-one 484 correspondence between the number of waves and the number of sub-units or 485 layers within an event deposit (e.g., Gelfenbaum and Jaffe, 2003; Hawkes et al., 486 2007). Alternatively, Unit 1 and Unit 2 of the Haiyan deposit may represent 487 different depositional phases corresponding to varying inundation regimes similar 488 to that observed during Hurricane Rita (Williams, 2009). The laminated, 489 coarsening upward, magnetite-rich basal sand in Unit 1 was most likely deposited 490 by suspension associated with the deep flow and bore-type flooding of Typhoon 491 Haiyan (e.g., Wang and Horwitz, 2007; Williams, 2009). In contrast, the coarser, 492 massive sand characterized by Unit 2 is likely to have been deposited as a traction 493 load of the washover terrace (e.g., Williams, 2009; Brill et al., 2016), either at the 494 latter stage of Haiyan flooding or from smaller overwash from the first phase of 495 recovery immediately following the typhoon. In addition, the coarsening upward 496 trend in both sand units (Figs. 6c,7d) may be due to increasing surge velocity 497 either upon the arrival of the first waves or during backflow. This is similar to

498 other intense hurricanes such as Hurricanes Rita and Ike (Horton et al., 2009;
499 Hawkes and Horton, 2012).

500

501	Overall, the two sub-units within the Haiyan overwash deposit display planar
502	laminations and coarsening upward trends (Figs. 6c,7d), jointly indicating upper
503	flow regime conditions of a unidirectional, turbulent, high velocity flow (Cheel,
504	1990; Fielding, 2006), which is consistent with the bore-type storm surge of
505	Typhoon Haiyan (Soria et al., 2016). In-situ field measurements of storm
506	overwash with a 0.7 m-deep surge in Assateague Island on the U.S. Atlantic
507	coast during Category 1 hurricanes yielded overwash flow velocities about 2 to
508	3.5 m s ⁻¹ (Leatherman, 1976; Fisher and Stauble, 1978). Comparably, a 1-m
509	deep Typhoon Haiyan flood on the coast 15 km to the south of Tanauan had
510	estimated flow velocities that ranged between 3 to 4 m s ⁻¹ (Ramos et al.,
511	unpublished report). A deeper surge flood of at least 3 m in Tacloban yielded
512	velocities as high as 7 m s ⁻¹ , but these elevated velocities were mainly due to
513	channelized flows on the streets in an urban setting (Takagi et al., 2016). These
514	flow velocities are relatively stronger than the previously modelled overland
515	flow velocity of Haiyan's surge in Tacloban not exceeding 2 m s ⁻¹ (Bricker et
516	al., 2014) and within the lower range of a tsunami flow such as the 2011
517	Tohoku tsunami (Hayashi and Koshimura, 2012). Our extensive sediment data
518	can be used in sediment transport modeling to substantiate sparse overland flow
519	velocity estimates.
520	

521 6.4. Haiyan and other modern storm and tsunami overwash events

522 Typhoon Haiyan's bore-like storm surge appears uncommon among the recent

523	notable storm surges worldwide (Mikami et al., 2016). Table 2 shows that
524	Typhoon Haiyan's storm surge had exceptionally short flooding duration resulting
525	in a steep storm surge profile (Soria et al., 2016) compared to similarly intense
526	modern storms. It is not surprising then that flow velocities associated with the
527	Haiyan surge were as high as 3 to 4 m s ⁻¹ (Ramos et al., unpublished report) to 7
528	ms ⁻¹ (Takagi et al., 2016), which are within the range of the flow velocities of the
529	2011 Tohoku tsunami in similar gently sloping coast of Sendai Plain (Abe et al.
530	2012; Sugawara and Goto, 2012; Hayashi and Koshimura, 2012) (Table 3).
531	Perhaps this apparent similarity of Haiyan's storm surge to tsunami flooding has
532	influenced overwash sedimentation such that although there are apparent
533	differences, the sedimentary features are in the most part equivocal of either storm
534	or tsunami deposits.
535	

536 The Typhoon Haiyan overwash deposit displays similar sedimentary structures and 537 stratigraphic relationships as those from comparably intense storms, but shows 538 different patterns of sediment thickness and landward extent (Table 2). Modern 539 overwash deposits commonly display a landward fining trend, planar laminae, and 540 sharp basal contact with the underlying pre-storm sequence, although the nature of 541 the contact can be either depositional or erosional (e.g., Morton et al., 2007; 542 Horton et al., 2009; Williams, 2009, 2010; Hawkes and Horton, 2012; Nott et al., 543 2013). Deposit thickness is often variable. The overwash deposits resulting from 544 Typhoon Haiyan and Hurricane Katrina are notably thin (<20 cm) compared to 545 Cyclone Yasi, and Hurricanes Ike, Rita, Isabel, and Carla (40 cm to <1 m). The 546 thicker storm deposits are typically associated with the washover terraces or fans 547 that are formed at a limited extent from the shore (e.g. Morton et al., 2007;

548	Williams, 2009; Nott et al., 2013). Many of the overwash deposits from recent
549	storms show landward extents that are limited to <100 m. For example, sediments
550	deposited by Cyclone Yasi reached a distance of ~80 m only (Nott et al., 2013).
551	This is in contrast to Typhoon Haiyan, and Hurricanes Ike and Carla, which
552	deposited sediments up to \geq 1 km inland (Morton et al., 2007; Williams, 2010)
553	(Table 2).

555 The Typhoon Hayian overwash deposit exhibits sedimentary structures that are 556 also observed in recent tsunami deposits. The Typhoon Haiyan overwash deposit 557 displays both fining and coarsening upward trends, but not systematic landward 558 fining. The deposit was also found to be massive or exhibit planar laminae. These 559 sedimentary features have also been associated with tsunami deposit (Table 3), 560 including those resulting from the 2011 Tohoku-oki (Abe et al., 2012; 561 Takashimizu et al., 2012), 2006 Western Java (Moore et al., 2011), and 2004 562 Indian Ocean earthquakes and tsunamis (e.g., Moore et al., 2006; Hawkes et al., 563 2007; Morton et al., 2008; Switzer et al., 2012) (Tables 4,5). In addition, the Haiyan deposit is comparably thin (<30 cm), which is similar to the recent tsunami 564 565 deposits of the 2011 Tohoku, 2006 West Java, and 2004 Indian Ocean tsunamis 566 (Tables 3-5). However, thicker tsunami deposits, reaching maximum thicknesses 567 of 40 cm, have also been reported for the 2011 Tohoku tsunami (Abe et al., 2012) 568 and 2004 Indian Ocean tsunami (Srinivasalu et al., 2007; Switzer et al., 2012). 569 570 The maximum inland extent of the Haiyan deposit shows notable similarities and 571 differences with recent tsunami deposits (Tables 3-5). For example, given similar 572 topography and overland flow conditions, the inland extent of the Typhoon Haiyan

573	deposit at Basey is comparable to the 2004 Indian Ocean tsunami deposits on the
574	narrow, steep beaches in Indonesia, India, and Sri Lanka. The overwash deposits
575	typically reached distances between 350 m and 400 m inland (Moore et al., 2006;
576	Srinivasalu et al., 2007; Morton et al., 2008; Switzer et al., 2012) (Table 4). In the
577	same way, the inland extent of the Typhoon Haiyan deposit at Tanauan is
578	comparable with the 2004 Indian Ocean tsunami deposit along broad beach-ridge
579	coasts in Thailand. The overwash deposits reached distances ranging from greater
580	than 1 km but not exceeding 2 km inland (Hori et al., 2007; Jankaew et al., 2008)
581	(Table 5). Although the coastal setting and overland flow depth are comparable,
582	the Typhoon Haiyan overwash deposit has limited maximum inland extent of <2
583	km compared to that of the 2011 Tohoku tsunami reaching to 4 km (Abe et al.,
584	2012; Takashimizu et al., 2012) (Table 3).
585	
586	The stark contrast between the Typhoon Haiyan overwash deposit in Leyte Gulf
587	and recent tsunami deposits can be seen in the nature of the basal contact. The
588	recent tsunami deposits typically exhibit an erosional base (Tables 3-5), whereas
589	the Typhoon Haiyan deposit exhibits a depositional base in most instances, but

590

rarely erosional (Table 1).

This comparative study of the Typhoon Haiyan deposit with other recent storm and tsunami deposits elsewhere illustrates that the inland extent and thickness of overwash sedimentation are widely variable, and there is no distinctive pattern between storm and tsunami deposits (Tables 2-5). The inland extent and thickness of overwash sedimentation are seemingly due to dynamic interaction of several site-specific factors including topographic relief, inundation limit, and overland

flow conditions (e.g., Morton et al., 2007; Hawkes and Horton, 2012; Apotsos et al., 2011). Contrary to the numerical modeling results of Watanabe et al. (2017), empirical data of modern overwash sediments show that the maximum inland extent and thickness of sedimentation, by virtue of the local- variability, may not necessarily provide conclusive evidence for distinguishing between storm and tsunami deposits.

604

605 7. Conclusions

606 Typhoon Haiyan deposits present clear evidence that the interaction between local 607 geology, coastal topographic relief and hydrodynamic conditions strongly 608 influence inland sedimentation during storm inundation. Despite the similar storm 609 surge levels between Tanauan and Basey, Typhoon Haiyan left starkly contrasting 610 sediments at both locations, underscoring the effect of local geology and 611 topographic relief. On the mixed siliciclastic-carbonate coast of Basey, the Haiyan 612 overwash sediments are carbonate-rich, poorly-sorted, silt to fine sand. In contrast, 613 on the silicilastic coast of Tanauan, the Haiyan overwash sediments are carbonate-614 poor, predominantly grey, moderately- to well-sorted, fine to coarse sand. 615 Moreover, the low-lying flat terrain in Tanauan promoted greater inland 616 penetration of the surge (2 km) and therefore of the overwash deposit (~1.6 km), 617 whereas the relatively irregular topography associated with raised carbonate 618 platforms and rice paddies on terraced slopes in Basey limited landward overwash 619 sedimentation (~400 m). The thickest deposits (8 to 20 cm) were observed locally 620 in topographic lows such as in shallow depressions and ponds. Notably, the inland extent of the Haiyan deposit varied spatially at places such as Tanauan and Tolosa, 621 622 even though the depositional setting, topographic relief, overland flow depth, and 623 inundation extent were similar. We infer that spatial variations in thickness and

624 inland extent of the Typhoon Haiyan deposit may be additionally attributed to the625 different type of vegetation cover.

626

627 On a global scale, the Typhoon Haiyan deposit represents a sediment record of an 628 extreme storm surge that exhibited flooding characteristics not typical of storm 629 inundation. The short flooding duration with elevated flow depths and flow 630 velocities are rare characteristics amongst recent notable storm surges worldwide 631 and are more comparable to tsunami flooding. The Haiyan deposit exhibits planar 632 stratification, a coarsening upward sequence, an overall but non-systematic 633 landward fining trend, and a sharp depositional (rarely erosional) basal contact 634 with the underlying substrate. Given similar topographic relief and overland flow 635 conditions, Typhoon Haiyan deposits show comparable sedimentation patterns in 636 terms of the thickness (<30 cm) and landward extent (hundred of meters up to 2 637 km) with the 2004 Indian Ocean tsunami deposits. Overall, the Haiyan deposits 638 have sedimentologic and stratigraphic characteristics that show a hybrid signature 639 common to both storm and tsunami deposits.

640

641 Acknowledgements

This work comprises Earth Observatory of Singapore contribution no. 148. This
research is supported by the National Research Foundation Singapore under its
Singapore NRF Fellowship scheme (National Research Fellow Award NRFRF2010-04) and the Singapore Ministry of Education under the Research Centres
of Excellence initiative. A National Science Foundation (EAR 1418717) grant
awarded to Pilarczyk provided additional financial support. This paper is a
contribution to IGCP Project 639 Sea-Level Changes from Minutes to Millennia.

649	We thank the local government executives Ruel Padayao (San Antonio, Basey),
650	Jiggo Bermiso (Magay), Carmelita Villamor (Solano), Jane Mercado (Santa Cruz),
651	and Pelagio Tecson Jr. (Mayor of Tanauan) who granted us access to the study
652	area. We are grateful to Ma. Angelique Doctor, Ronald Lloren, Joan Macalalad for
653	assisting in the field, and to Stephen Carson, Wenshu Yap, and Amanda Cheong
654	Yee Lin for conducting laboratory analyses. We acknowledge Sorvigenaleon
655	Ildefonso, Riovie Ramos, and Mikko Garcia for helping us gather elevation data.
656	We also thank Jasper Knight, Jennifer Miselis, and two anonymous reviewers,
657	whose comprehensive reviews and constructive comments have significantly
658	improved the manuscript.
659	
660	References
661	Abe, T., Goto, K., Sugawara, D., 2012. Relationship between themaximum extent
662	of tsunami sand and the inundation limit of the 2011 Tohoku-oki tsunami
663	on the Sendai Plain. Sedimentary Geology 282, 142-150.
664	Abe, T., Goto, K., Sugawara, D., Suppasri, A., 2015. Geological traces of the 2013
665	Typhoon Haiyan in the Southeast coast of Leyte Island, Second Report of
666	IRIDeS Fact-finding mission to Philippines, Tohoku University International
667	Research Institute of Disaster Science, pp. 169-174.
668	Apotsos, A., Gelfenbaum, G., Jaffe, B., 2011. Process-based modeling of tsunami
669	inundation and sediment transport. Journal of Geophysical Research 116,
670	F01006, doi:10.1029/2010JF001797.
671	Aurelio, M.A, Peña, R.E., 2002. Geology and mineral resources of the Philippines,
672	Vol. 1., Department of Environment and Natural Resources Mines and
673	Geosciences Bureau, Philippines, pp. 277-300.
674	Blott, S.J. Pye, K., 2001. GRADISTAT: a grain size distribution and statistics
675	package for the analysis of unconsolidated sediments. Earth Surface

676	Processes and Landforms 26, 1237-1248. GRADISTAT Program.
677	Downloaded at http://www.kpal.co.uk/gradistat.html.
678	Bricker, J., Takagi, H., Mas, E., Kure, S., Adriano, B., Yi, C., Roeber, V., 2014.
679	Spatial variation of damage due to storm surge and waves during Typhoon
680	Haiyan in the Philippines. Journal of Japan Society of Civil Engineers,
681	Series B2 (Coastal Engineering) 70, I_231-I_235.
682	Brill, D., May, S. M., Engel, M., Reyes, M., Pint, A., Opitz, S., Dierick, M.,
683	Gonzalo, L. A., Esser, S., Brückner, H., 2016. Typhoon Haiyan's
684	sedimentary record in coastal environments of the Philippines and its
685	palaeotempestological implications. Natural Hazards and Earth System
686	Sciences 16, 2799–2822.
687	Boughton, G.N., Henderson, D.J., Ginger, J.D., Holmes, J.D., Walker, G.R.,
688	Leitch, C.J., Somerville, L.R., Frye, U., Jayasinghe, N.C., Kim, P.Y., 2011.
689	Tropical Cyclone Yasi: Structural damage to buildings. Technical Report
690	No. 57, James Cook University, pp. 1-15.
691	Buynevich, I.V., FitzGerald, D.M., Van Heteren, S., 2004. Sedimentary records of
692	intense storms in Holocene barrier sequences, Maine, USA. Marine Geology
693	210, 135–148.
694	Cheel, R.J., 1990. Horizontal lamination and the sequence of bed phases and
695	stratification under upper-flow-regime conditions. Sedimentology 37, 517-
696	529.
697	Dean, W.E., 1974. Determination of carbonate and organic matter in calcareous
698	sediments and sedimentary rocks by loss on ignition: Comparison with other
699	methods. Journal of Sedimentary Petrology 44, 242-248.
700	Donnelly, J.P., Butler, J., Roll, S., Wengren, M., Webb, T., III, 2004. A
701	backbarrier overwash record of intense storms from Brigantine, New Jersey.
702	Marine Geology 210, 107–121.
703	Doran, K.S., Plant, N.G., Stockdon, H.F., Sallenger, A.H., Serafin, K.A., 2009.
704	Hurricane Ike: observations of coastal change: U.S. Geological Survey
705	Open-File Report, 2009-1061, pp. 35.

- Fielding, C.R. 2006. Upper flow regime sheets, lenses and scour fills: extending
- the range of architectural elements for fluvial sediment bodies. SedimentaryGeology 190, 227–240.
- Fisher, J.S., Stauble, D.K., 1978. Washover and dune interaction on a barrier
- island. In: Proceedings Coastal Zone '78 (San Francisco, California, ASCEl.
 pp. 1611-1618.
- Flater, D., 1998. XTide: Harmonic tide clock and tide predictor accessed on 25
 May 2014. www.flaterco.com/xtide/.
- Folk, R.L., Ward. W.C., 1957. Brazos River bar: a study in the significance of
 grain size parameters. Journal of Sedimentary Petrology 27, 3–26.
- 716 Fritz, H.M., Blount, C., Sokoloski, R., Singleton, J., Fuggle, A., McAdoo, B.G.,
- 717 Moore, A., Grass, C., Tate, B., 2007. Hurricane Katrina Storm surge
- 718 distribution and field observations on the Mississippi barrier islands.
- T19 Estuarine, Coastal and Shelf Sciences 74, 12–20.
- 720 Fritz, H.M., Phillips, D.A., Okayasu, A., Shimozono, T., Liu, H., Mohammed, F.,
- 721 Skanavis, V., Synolakis, C. E., Takahashi, T., 2012. The 2011 Japan tsunami
- current velocity measurements from survivor videos at Kesennuma Bay
- using LiDAR. Geophysical Research Letters 39, L00G23,
- 724 doi:10.1029/2011GL050686.
- Gelfenbaum, G., Jaffe, B., 2003. Erosion and sedimentation from the 17 July, 1998
 Papua New Guinea tsunami. Pure and Applied Geophysics 160, 1969–1999.
- Gelfenbaum, G., Vatvani, D., Jaffe, B., Dekker, F., 2007. Tsunami inundation and
 sediment transport in the vicinity of coastal mangrove forest. In: Kraus N.
- C., Rosati, J. D. (Eds.), Coastal Sediments '07. American Society of Civil
 Engineers, Reston, Va., pp. 1117–1129,
- Goff, J., McFadgen, B. G., Chagué-Goff, C., 2004. Sedimentary differences
 between the 2002 Easter storm and the 15th-century Okoropunga tsunami,
- southeastern North Island, New Zealand. Marine Geology 204, 235–250.
- southeastern North Island, New Zealand. Marine Geology 204, 255–250.
- Goto, K., Okada, K., Imamura F., 2009. Characteristics and hydrodynamics of
 boulders transported by storm waves at Kudaka Island, Japan. Marine
 Geology 262, 14-24.

737	Gouramanis, C., Switzer, A.D., Jankaew, K., Bristow, C.S., Pham, D.T., Ildefonso,
738	S.R., 2017. High-frequency coastal overwash deposits from Phra Thong
739	Island, Thailand. Scientific Reports. 7, 43742, doi: 10.1038/srep43742.
740	Hawkes, A.D., Bird, M., Cowie, S., Grundy-Warr, C., Horton, B., Tan Shau Hwai,
741	A., Law, L., Macgregor, C., Nott, J., Eong Ong, J., Rigg, J., Robinson, R.,
742	Tan-Mullins, M., Tiong Sa, T., Zulfigar, Y., 2007. The sediments deposited
743	by the 2004 Indian Ocean Tsunami along the Malaysia-Thailand Peninsula.
744	Marine Geology 242, 169–190.
745	Hawkes, A.D., Horton, B.P., 2012. Sedimentary record of storm deposits from
746	Hurricane Ike, Galveston and San Luis Islands, Texas. Geomorphology 171
747	-172, 180-189.
748	Hayashi, S., Koshimura, S., 2012. Measurement of the 2011 Tohoku tsunami flow
749	velocity by the aerial video analysis. Journal of JSCE, Series B2 (Coastal
750	Engineering) 68, 366–370.
751	Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for
752	estimating organic and carbonate content in sediments: reproducibility and
753	comparability. Journal of Paleolimnology 25, 101–110.
754	Hori, K., Kuzumoto, R., Hirouchi, D., Umitsu, M., Janjirawuttikul, N.,
755	Patanakanog, B., 2007. Horizontal and vertical variation of 2004 Indian
756	tsunami deposits: an example of two transects along the western coast of
757	Thailand. Marine Geology 239, 163–172.
758	Horton, B.P., Rossi, V., Hawkes, A.D., 2009. The sedimentary record of the 2005
759	hurricane season from Mississippi and Alabama coastlines. Quaternary
760	International 195, 15–30.
761	Jankaew, K., Atwater, B.F., Sawai, Y., Choowong, M., Charoentitirat, T., Martin,
762	M.E., Prendergast, A., 2008. Medieval forewarning of the 2004 Indian
763	Ocean tsunami in Thailand. Nature 455, 1228–1231.
764	Kortekaas, S., 2002. Tsunamis, storms and earthquakes: distinguishing coastal
765	flooding events. Unpublished Ph.D. thesis, University of Coventry, 179 pp.
766	Kortekaas, S., Dawson, A.G., 2007. Distinguishing tsunami and storm deposits: an
767	example from Martinhal, SW Portugal. Sedimentary Geology 200, 208-21.

768	Leatherman, S.P., 1976. Assateague Island: A case study of barrier island
769	dynamics. In: Leatherman, S.P. (Ed), Overwash processes. Benchmark
770	Papers in Geology V.58. Hutchinson Ross Publishing Company,
771	Stroudsburg, PA, pp. 350-364.
772	Leatherman, S.P., Williams, A.T., 1977. Lateral textural grading in overwash
773	sediments. Earth Surface Processes 2, 333-341.
774	Leatherman, S.P., 1981. Overwash processes. Benchmark papers in Geology, Vol.
775	58. Hutchinson Ross Publishing Co., USA, 376 pp.
776	Lin, II., Pun, IF., Lien, CC., 2014. "Category-6" supertyphoon Haiyan in
777	global warming hiatus: Contribution from subsurface ocean warming.
778	Geophysical Research Letters 41, 8547-8553.
779	Liu, K-b., Fearn, M. L., 1993. Lake-sediment record of late Holocene hurricane
780	activities from coastal Alabama. Geology 21, 793-796.
781	Mas, E., Bricker, J., Kure, S., Adriano, B., Yi, C., Suppasri, A., Koshimura, S.,
782	2015. Field survey report and satellite image interpretation of the 2013 Super
783	Typhoon Haiyan in the Philippines. Natural Hazards and Earth Systems
784	Science 15, 805–816.
785	McGee, B.D., Goree, B.B., Tollett, R.W., Woodward, B.K., Kress, W.H., 2013.
786	Hurricane Rita Surge Data, Southwestern Louisiana and Southeastern Texas,
787	September to November 2005. LC11. U.S. Geological Survey.
788	http://pubs.usgs.gov/ds/2006/220/index.htm#elevsurveys accessed on 6 May
789	2016.
790	Mikami, T., Shibayama, T., Takagi, H., Matsumaru, R., Esteban, M., Thao, N.D.,
791	De Leon, M., Valenzuela, V.P., Oyama, T., Nakamura, R., Kumagai, K., Li,
792	S., 2016. Storm surge heights and damage caused by the 2013 Typhoon
793	Haiyan slong the Leyte Gulf coast. Coastal Engineering Journal 58,
794	1640005, doi: 10.1142/S0578563416400052.
795	Morgerman, J., 2014. Super Typhoon Haiyan in Tacloban City and Leyte,
796	Philippines. Accessed online on 4 February 2017.
797	http://www.icyclone.com/upload/chases/haiyan/iCyclone_HAIYAN_in_Ta

799	Moore, A., Goff, J., McAdoo, B.G., Fritz, H.M., Guzman, A., Kalligeris, N.,
800	Kalsum, K., Susanto, A., Suteja, D., Synolakis, C.E., 2011. Sedimentary
801	deposits from the 17 July 2006 Western Java Tsunami, Indonesia: Use of
802	grain size analyses to assess tsunami flow depth, speed, and traction carpet
803	characteristics. Pure and Applied Geophysics 168, 1951–1961.
804	Moore, A., Nishimura, Y., Gelfenbaum, G., Kamataki, T., Triyono, R., 2006.
805	Sedimentary deposits of the 26 December 2004 tsunami on the northwest
806	coast of Aceh, Indonesia. Earth, Planets and Space 58, 253-258.
807	Morton, R.A., Barras, J.A., 2011. Hurricane impacts on coastal wetlands: a half-
808	century record of stormgenerated features from southern Louisiana. Journal
809	of Coastal Research 27, 27–43.
810	Morton, R.A., Gelfenbaum, G., Jaffe, B.E., 2007. Physical criteria for
811	distinguishing sandy tsunami and storm deposits using modern examples.
812	Sedimentary Geology 200, 184–207.
813	Morton, R.A., Goff, J.R., Nichol, S.L., 2008. Hydrodynamic implications of
814	textural trends in sand deposits of the 2004 tsunami in Sri Lanka.
815	Sedimentary Geology 207, 56-64.
816	Morton, R.A., Sallenger, A.H., 2003. Morphological impacts of extreme storms on
817	sandy beaches and barriers. Journal of Coastal Research 19, 560-573.
818	Nanayama, F., Shigeno, K., Satake, K., Shimokawa, K., Koitabashi, S., Mayasaka,
819	S., Ishii, M., 2000. Sedimentary differences between 1993 Hokkaido-nansei-
820	oki tsunami and 1959 Miyakojima typhoon at Tasai, southwestern Hokkaido,
821	northern Japan. Sedimentary Geology 135, 255-264.
822	Nott, J., Chague-Goff, C., Goff, J., Sloss, C., Riggs, N., 2013. Anatomy of sand
823	beach ridges: Evidence from severe Tropical Cyclone Yasi and its
824	predecessors, northeast Queensland, Australia. Journal of Geophysysical
825	Research: Earth Surface 118, 1710–1719.
826	Otvos, E.G., 2011. Hurricane signatures and landforms-toward improved
827	interpretations and global storm climate chronology. Sedimentary Geology
828	239, 10–22.

829	Pilarczyk, J.E., Horton, B.P., Soria, J.L.A., Switzer, A.D., Siringan, F., Fritz,
830	H.M., Khan, N.S., Ildefonso, S., Ramos, R., Doctor, A.A., Garcia, M.L.,
831	2016. Micropaleontology of the 2013 Typhoon Haiyan overwash sediments
832	from the Leyte Gulf, Philippines. Sedimentary Geology 339, 104-114.
833	Permanent Service on Mean Sea Level, PMSL accessed on 16 February 2016.
834	http://www.psmsl.org/data/obtaining/stations/664.php.
835	Ramírez-Herrera, M.T., Lagos, M., Hutchinson, I., Kostoglodov, V., Machain,
836	M.L., Caballero, M., Goguitchaichvili, A., Aguilar, B., Chagué-Goff, C.,
837	Goff, J., Ruiz-Fernández, A-C., Ortiz, M., Nava, H., Bautista, F., Lopez, G.
838	I., Quintana, P., 2012. Extreme wave deposits on the Pacific coast of
839	Mexico: Tsunamis or storms?—A multi-proxy approach. Geomorphology
840	139–140, 360–371.
841	Ramos, R., Fritz, H.M., Switzer, A.D., Ildefonso, S.R., Garcia, M., 2014.
842	Supertyphoon Haiyan storm-surge velocity estimates from eyewitnesses'
843	videos. PhD Qualifying Exam Report. School of Physical and Mathematical
844	Sciences, Nanyang Technological University, Singapore.
845	Sedgwick, P.E., Davis. R.A. Jr., 2003. Stratigraphy of washover deposits in
845 846	Sedgwick, P.E., Davis. R.A. Jr., 2003. Stratigraphy of washover deposits in Florida: implications for recognition in the stratigraphic record. Marine
845 846 847	Sedgwick, P.E., Davis. R.A. Jr., 2003. Stratigraphy of washover deposits in Florida: implications for recognition in the stratigraphic record. Marine Geology 200, 31-48.
845 846 847 848	 Sedgwick, P.E., Davis. R.A. Jr., 2003. Stratigraphy of washover deposits in Florida: implications for recognition in the stratigraphic record. Marine Geology 200, 31-48. Soria, J.L.A., Switzer, A.D., Villanoy, C.L., Fritz, H.M., Bilgera, P.H.T., Cabrera,
845 846 847 848 849	 Sedgwick, P.E., Davis. R.A. Jr., 2003. Stratigraphy of washover deposits in Florida: implications for recognition in the stratigraphic record. Marine Geology 200, 31-48. Soria, J.L.A., Switzer, A.D., Villanoy, C.L., Fritz, H.M., Bilgera, P.H.T., Cabrera, O.C., Siringan, F.P., Yacat-Sta. Maria, Y., Ramos, R.D., Fernandez, I.Q.,
845 846 847 848 849 850	 Sedgwick, P.E., Davis. R.A. Jr., 2003. Stratigraphy of washover deposits in Florida: implications for recognition in the stratigraphic record. Marine Geology 200, 31-48. Soria, J.L.A., Switzer, A.D., Villanoy, C.L., Fritz, H.M., Bilgera, P.H.T., Cabrera, O.C., Siringan, F.P., Yacat-Sta. Maria, Y., Ramos, R.D., Fernandez, I.Q., 2016. Repeat storm surge disasters of Typhoon Haiyan and its 1897
845 846 847 848 849 850 851	 Sedgwick, P.E., Davis. R.A. Jr., 2003. Stratigraphy of washover deposits in Florida: implications for recognition in the stratigraphic record. Marine Geology 200, 31-48. Soria, J.L.A., Switzer, A.D., Villanoy, C.L., Fritz, H.M., Bilgera, P.H.T., Cabrera, O.C., Siringan, F.P., Yacat-Sta. Maria, Y., Ramos, R.D., Fernandez, I.Q., 2016. Repeat storm surge disasters of Typhoon Haiyan and its 1897 predecessor in the Philippines. Bulletin of the American Meteorological
 845 846 847 848 849 850 851 852 	 Sedgwick, P.E., Davis. R.A. Jr., 2003. Stratigraphy of washover deposits in Florida: implications for recognition in the stratigraphic record. Marine Geology 200, 31-48. Soria, J.L.A., Switzer, A.D., Villanoy, C.L., Fritz, H.M., Bilgera, P.H.T., Cabrera, O.C., Siringan, F.P., Yacat-Sta. Maria, Y., Ramos, R.D., Fernandez, I.Q., 2016. Repeat storm surge disasters of Typhoon Haiyan and its 1897 predecessor in the Philippines. Bulletin of the American Meteorological Society 97, 31-48.
 845 846 847 848 849 850 851 852 853 	 Sedgwick, P.E., Davis. R.A. Jr., 2003. Stratigraphy of washover deposits in Florida: implications for recognition in the stratigraphic record. Marine Geology 200, 31-48. Soria, J.L.A., Switzer, A.D., Villanoy, C.L., Fritz, H.M., Bilgera, P.H.T., Cabrera, O.C., Siringan, F.P., Yacat-Sta. Maria, Y., Ramos, R.D., Fernandez, I.Q., 2016. Repeat storm surge disasters of Typhoon Haiyan and its 1897 predecessor in the Philippines. Bulletin of the American Meteorological Society 97, 31-48. Srinivasalu, S., Thangadurai, N., Switzer, A. D., Ram Mohan, V., Ayyamperumal,
 845 846 847 848 849 850 851 852 853 854 	 Sedgwick, P.E., Davis. R.A. Jr., 2003. Stratigraphy of washover deposits in Florida: implications for recognition in the stratigraphic record. Marine Geology 200, 31-48. Soria, J.L.A., Switzer, A.D., Villanoy, C.L., Fritz, H.M., Bilgera, P.H.T., Cabrera, O.C., Siringan, F.P., Yacat-Sta. Maria, Y., Ramos, R.D., Fernandez, I.Q., 2016. Repeat storm surge disasters of Typhoon Haiyan and its 1897 predecessor in the Philippines. Bulletin of the American Meteorological Society 97, 31-48. Srinivasalu, S., Thangadurai, N., Switzer, A. D., Ram Mohan, V., Ayyamperumal, T. 2007. Erosion and sedimentation in Kalpakkam (N Tamil Nadu, India)
 845 846 847 848 849 850 851 852 853 854 855 	 Sedgwick, P.E., Davis. R.A. Jr., 2003. Stratigraphy of washover deposits in Florida: implications for recognition in the stratigraphic record. Marine Geology 200, 31-48. Soria, J.L.A., Switzer, A.D., Villanoy, C.L., Fritz, H.M., Bilgera, P.H.T., Cabrera, O.C., Siringan, F.P., Yacat-Sta. Maria, Y., Ramos, R.D., Fernandez, I.Q., 2016. Repeat storm surge disasters of Typhoon Haiyan and its 1897 predecessor in the Philippines. Bulletin of the American Meteorological Society 97, 31-48. Srinivasalu, S., Thangadurai, N., Switzer, A. D., Ram Mohan, V., Ayyamperumal, T. 2007. Erosion and sedimentation in Kalpakkam (N Tamil Nadu, India) from the 26th December 2004 tsunami. Marine Geology 240, 65–75.
 845 846 847 848 849 850 851 852 853 854 855 856 	 Sedgwick, P.E., Davis. R.A. Jr., 2003. Stratigraphy of washover deposits in Florida: implications for recognition in the stratigraphic record. Marine Geology 200, 31-48. Soria, J.L.A., Switzer, A.D., Villanoy, C.L., Fritz, H.M., Bilgera, P.H.T., Cabrera, O.C., Siringan, F.P., Yacat-Sta. Maria, Y., Ramos, R.D., Fernandez, I.Q., 2016. Repeat storm surge disasters of Typhoon Haiyan and its 1897 predecessor in the Philippines. Bulletin of the American Meteorological Society 97, 31-48. Srinivasalu, S., Thangadurai, N., Switzer, A. D., Ram Mohan, V., Ayyamperumal, T. 2007. Erosion and sedimentation in Kalpakkam (N Tamil Nadu, India) from the 26th December 2004 tsunami. Marine Geology 240, 65–75. Suerte, L.O., Yumul, G.P.Jr., Tamayo, R.A.Jr., Dimalanta, C.B., Zhou, MF.,
 845 846 847 848 849 850 851 852 853 854 855 856 857 	 Sedgwick, P.E., Davis. R.A. Jr., 2003. Stratigraphy of washover deposits in Florida: implications for recognition in the stratigraphic record. Marine Geology 200, 31-48. Soria, J.L.A., Switzer, A.D., Villanoy, C.L., Fritz, H.M., Bilgera, P.H.T., Cabrera, O.C., Siringan, F.P., Yacat-Sta. Maria, Y., Ramos, R.D., Fernandez, I.Q., 2016. Repeat storm surge disasters of Typhoon Haiyan and its 1897 predecessor in the Philippines. Bulletin of the American Meteorological Society 97, 31-48. Srinivasalu, S., Thangadurai, N., Switzer, A. D., Ram Mohan, V., Ayyamperumal, T. 2007. Erosion and sedimentation in Kalpakkam (N Tamil Nadu, India) from the 26th December 2004 tsunami. Marine Geology 240, 65–75. Suerte, L.O., Yumul, G.P.Jr., Tamayo, R.A.Jr., Dimalanta, C.B., Zhou, MF., Maury, R.C., Polvé, M., Balce, C.L., 2005. Geology, Geochemistry and U-
 845 846 847 848 849 850 851 852 853 854 855 856 857 858 	 Sedgwick, P.E., Davis. R.A. Jr., 2003. Stratigraphy of washover deposits in Florida: implications for recognition in the stratigraphic record. Marine Geology 200, 31-48. Soria, J.L.A., Switzer, A.D., Villanoy, C.L., Fritz, H.M., Bilgera, P.H.T., Cabrera, O.C., Siringan, F.P., Yacat-Sta. Maria, Y., Ramos, R.D., Fernandez, I.Q., 2016. Repeat storm surge disasters of Typhoon Haiyan and its 1897 predecessor in the Philippines. Bulletin of the American Meteorological Society 97, 31-48. Srinivasalu, S., Thangadurai, N., Switzer, A. D., Ram Mohan, V., Ayyamperumal, T. 2007. Erosion and sedimentation in Kalpakkam (N Tamil Nadu, India) from the 26th December 2004 tsunami. Marine Geology 240, 65–75. Suerte, L.O., Yumul, G.P.Jr., Tamayo, R.A.Jr., Dimalanta, C.B., Zhou, MF., Maury, R.C., Polvé, M., Balce, C.L., 2005. Geology, Geochemistry and U- Pb SHRIMP age of the Tacloban Ophiolite Complex, Leyte (Central
 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 	 Sedgwick, P.E., Davis. R.A. Jr., 2003. Stratigraphy of washover deposits in Florida: implications for recognition in the stratigraphic record. Marine Geology 200, 31-48. Soria, J.L.A., Switzer, A.D., Villanoy, C.L., Fritz, H.M., Bilgera, P.H.T., Cabrera, O.C., Siringan, F.P., Yacat-Sta. Maria, Y., Ramos, R.D., Fernandez, I.Q., 2016. Repeat storm surge disasters of Typhoon Haiyan and its 1897 predecessor in the Philippines. Bulletin of the American Meteorological Society 97, 31-48. Srinivasalu, S., Thangadurai, N., Switzer, A. D., Ram Mohan, V., Ayyamperumal, T. 2007. Erosion and sedimentation in Kalpakkam (N Tamil Nadu, India) from the 26th December 2004 tsunami. Marine Geology 240, 65–75. Suerte, L.O., Yumul, G.P.Jr., Tamayo, R.A.Jr., Dimalanta, C.B., Zhou, MF., Maury, R.C., Polvé, M., Balce, C.L., 2005. Geology, Geochemistry and U- Pb SHRIMP age of the Tacloban Ophiolite Complex, Leyte (Central Philippines): Implications for the existence and extent of the Proto-

861	Sugawara, D., Goto, K., 2012. Numerical modeling of the 2011 Tohoku-oki
862	tsunami in the offshore and onshore of Sendai Plain, Japan. Sedimentary
863	Geology 282, 110–123.
864	Sugawara, D., Minoura, K., Imamura, F., 2008. Tsunamis and tsunami
865	sedimentology. In: Shiki, T. Tsuji, Y., Yamazaki, T., Minoura, K. (Eds.)
866	Tsunamiites-features and implications. Elsevier B.V. Amsterdam, pp. 9-49.
867	Switzer, A.D., Jones, B.G., 2008. Set-up, deposition and sedimentary
868	characteristics of two storm overwash deposits, Abrahams Bosom Beach,
869	eastern Australia. Journal of Coastal Research 24-1A, 189-200.
870	Switzer, A.D., Pile, J., 2015. Grain size analysis. In: Shennan, I., Long, A.J.,
871	Horton, B.P. (Eds.) Handbook of Sea-Level Research. John Wiley & Sons,
872	Ltd., pp. 331-346.
873	Switzer, A. D., Srinivasalu, S., Thangadurai, N., Ram Mohan, V., 2012. Bedding
874	structures in Indian tsunami deposits that provide clues to the dynamics of
875	tsunami inundation. In: Terry, J.P., Goff, J. (Eds) Natural Hazards in the
876	Asia-Pacific Region: Recent Advances and Emerging Concepts. Geological
877	Society, London, Special Publications 361, pp. 61-77.
878	Szczuciński, W., Kokociński, M., Rzeszewski, M., Chagué-Goff, C., Cachão, M.,
879	Goto, K., Sugawara, D., 2012. Sediment sources and sedimentation processes of
880	2011 Tohoku-oki tsunami deposits on the Sendai Plain, Japan — Insights from
881	diatoms, nannoliths and grain size distribution. Sedimentary Geology 282, 40-
882	56.
883	Tajima, Y., Yasuda, T., Pacheco, B.M., Cruz, E.C., Kawasaki, K., Nobuoka, H.,
884	Miyamoto, M., Asano, Y., Arikawa, T., Ortigas, N.M., Aquino, R., Mata,
885	W., Valdez, J., Briones, F., 2014: Initial report of JSCE-PICE joint survey on
886	the storm surge disaster caused by Typhoon Haiyan. Coastal Engineering
887	Journal 56, 1450006, doi: 10.1142/S0578563414500065.
888	Takagi, H., Esteban, M., 2016. Statistics of tropical cyclone landfalls in the
889	Philippines: unusual characteristics of 2013 Typhoon Haiyan. Natural
890	Hazards 80, 211-222.
891	Takagi, H., Esteban, M., Shibayama, T., Mikami, T., Matsumaru, R., De Leon, M.,

892 893 894	Thao, N.D., Oyama, T., Nakamura, R., 2015. Track analysis, simulation, and field survey of the 2013 Typhoon Haiyan storm surge. Journal of Flood Risk Management $10, 42-52$
895 896 897	 Takagi, H., Li, S., de Leon, M., Esteban, M., Mikami, T., Matsumaru, R., Shibayama, T., Nakamura, R., 2016. Storm surge and evacuation in urban areas during the peak of a storm. Coastal Engineering 108, 1–9.
898	Takashimizu, Y., Urabe, A., Suzuki, K., Sato, Y., 2012. Deposition by the 2011
899	Tohoku-oki tsunami on coastal lowland controlled by beach ridges near
900	Sendai Japan. Sedimentary Geology 282, 124–141.
901 902	Tang, H., and Weiss, R., 2015. A model for tsunami flow inversion from deposits (TSUFLIND). Marine Geology 370, 55–62.
903	Wang, P., Horwitz, M.H., 2007. Erosional and depositional characteristics of
904	regional overwash deposits caused by multiple hurricanes. Sedimentology
905	54, 545–564.
906	Watanabe, M., Bricker, J.D., Goto, K., Imamura, F., 2017. Factors responsible for
907	the limited inland extent of sand deposits on Leyte Island during 2013
908	Typhoon Haiyan. Journal of Geophysical Research: Oceans 122, 2795–2812.
909	Williams, H.F.L., 2009. Stratigraphy, sedimentology, and microfossil content of
910	Hurricane Rita storm surge deposits in southwest Louisiana. Journal of
911	Coastal Research 25, 1041–1051.
912	Williams, H.F.L., 2010. Storm surge deposition by Hurricane Ike on the McFaddin
913	National Wildlife Refuge, Texas: Implications for paleotempestology
914	studies. Journal of Foraminiferal Research 40, 210-219.
915 916 917 918	Williams, H.F.L., Flanagan, W.M., 2009. Contribution of Hurricane Rita storm surge deposition to long-term sedimentation in Louisiana coastal woodlands and marshes. Journal of Coastal Research, Special Issue 56, 1671–1675.

919 Figure Captions

- 920 Fig. 1. Study area. (a) Track of Typhoon Haiyan traversing central Philippines in
- 921 November 2013. Inset: San Pedro Bay and surrounding coastal towns including
- 922 Basey and Tanauan.

923

Fig. 2. Study area and sampling location. (a) Index map of Basey and Tanauan

925 transects and trenches. (b) Coastal environment and location of the trenches.

926 (c) Basey transect Ba. (d) Tanauan transects Sc, So and Ma.

927

- ⁹²⁸ Fig. 3. Sediment samples taken along transects in Basey and Tanauan. (a) Ba14
 ⁹²⁹ and (b) Ba3 in transect Ba. (c) Ma9 in transect Ma, (d) So12 in transect So.
 930
- ⁹³¹ Fig 4. Sediment data along transect Ba. (i) Across-shore profile and sample
- 932 locations, (ii) thickness of Haiyan deposits, (iii) mean grain size, (iv) sorting, (v)

933 skewness, (vi) organic matter content, (vii) carbonate content.

934

- ⁹³⁵ Fig. 5. Sediment data along transects (a) Sc, (b) So and (c) Ma. (i) Across-shore
- ⁹³⁶ profile and sample locations, (ii) thickness of Haiyan deposits, (iii) mean grain
- 937 size, (iv) sorting, (v) skewness, (vi) organic matter content, (vii) carbonate content.

- ⁹³⁹ Fig. 6. Trench MP4. (a) Trench wall perpendicular to the shore. (b) Grain size
- 940 distribution of each sediment unit. (c) Stratigraphic relationship and contrasting
- 941 sedimentological characteristics between the Haiyan deposit and the underlying

942 pre-Haiyan soil.

943

⁹⁴⁴ Fig. 7. Trench MP7. (a) Trench wall perpendicular to the shore. (b) Trench	ı wall
---	--------

- ⁹⁴⁵ parallel to the shore. (c) Grain size distribution of each sediment unit. (d)
- 946 Stratigraphic relationship and contrasting sedimentological characteristics between

947 the Haiyan deposit and the underlying pre-Haiyan soil.

- 949 Figure 8. Typhoon Haiyan overwash sand revealed on the inland trenches.
- 950 (a) ~8 cm thick Haiyan sand in trench MP6. (b) Grain size distribution of Haiyan
- ⁹⁵¹ sand along transect MP5 to MP7. (c) ~4 cm thick Haiyan sand in trench MP1. (d)
- 952 Grain size distribution of Haiyan sand along transect MP1 to MP 4.

Highlights:

- Haiyan overwash sediments are variably thin (<20 cm) sand to mud deposits extending inland to ~1.6 km.
- Topography and vegetation control local variability of overwash sediment characteristics.
- Sediment records of extreme storm surges such as Haiyan may resemble a typical tsunami deposit.

Ma11 Ma10 Rice paddies

1 km

Ma4

Ma9

Tanaua

Table 1. Comparison of the hydrodynamics and sedimentary signatures of the Typhoon Haiyan storm surge in Leyte Gulf.

_							
tina		Locality	Tanauan, Leyte	Basey, Samar	Tanauan, Leyte	Tolosa, Leyte	Tolosa, Leyte
al set	ימו ספו	Coastal geomorphology	sandy beach coastal plain	narrow sandy beach on carbonate platform	sandy beach	sandy beach	beach-ridge plain
Loc	Š	Ground surface elevation, m (asl)	1.5 to 2 m	2 to 3 m	0 to 5 m	0 to 3 m	0 to 2.5 m
<u>.</u>		Flow depth (m)	3 to 4 m	3 to 4 m	3.6 m	3.8 m	3.5 m
/drodynami	ons	Inundation distance	2 km	800 m	3.1 km	1.4 km	800 m
	conditi	Distance from storm eye (zone of max winds)*	15 km	30 km	15 km	15 km	5 km
Ŧ	Ŭ	References	Soria et al., 2016	Soria et al., 2016	Abe et al., 2015	Abe et al., 2015	Brill et al., 2016
		Vertical grading of entire deposit	Unit 1 (sand sheet to mud): coarsening upward Unit 2 (washover terrace): coupled fining and coarsening upward	no analysis	no analysis	no analysis	Unit 1 (sand sheet): fining upward Unit 2 (washover terrace): repeated coarsening fining sequences
tures	e	Lateral grading	overall landward fining	overall landward fining	no analysis	no analysis	landward fining
srtuc	Sca	Sorting	moderate to well-sorted	poorly sorted	no analysis	no analysis	well-sorted
s and s	[rench	Thickness	10-20 cm (proximal); 2 cm (distal)	2 to 8 cm	0.1 cm to 10 cm; 40 to 80 cm very close to shore	0.1 cm to 10 cm	10 to 20 cm (proximal); few mm, 2 to 5 cm (distal)
ary texture:		Sedimentary structures	Unit 1: massive to horizontal planar lamination Unit 2: subhorizontal planar laminae	massive	no analysis	no analysis	Unit 1: planar lamination; scour marks at the base Unit 2: inclined lamination (10-15°)
iment		Basal contact	sharp, depositional	sharp, depositional	no analysis	no analysis	sharp, erosional but also depositional
Sed	sect Scale	Cross-shore geometry	washover terrace (proximal); sand sheet to mud (distal) with varying thickness landwards but generally thick in depressions	overall but not systematic landward thinning	landward thinning	landward thinning	washover terrace (proximal); sand sheet (distal) exhibiting landward thinning
	Tran	Inland extent	1.6 km	350 m	150 m to 180 m (sand sheet)	130 m to 150 m (sand sheet)	250 m (sand sheet)
	-	References	This Study	This Study	Abe et al., 2015	Abe et al., 2015	Brill et al., 2016

* Estimated based on the storm eye location of Morgerman, 2014.

Table 2. Comparison of the hydrodynamics and sedimentary signatures of the Typhoon Haiyan storm surge, and other recent storms of comparable intensity.

mau	urge	Tropical Cyclone ID	Typhoon Haiyan	Typhoon Haiyan	Cyclone Yasi	Hurricane Ike	Hurricane Ike	Hurricane Rita	Hurricane Katrina	Hurricane Isabel	Hurricane Carla
ν. Υ	รัง	Event Date	November 2013	November 2013	February 2011	September 2008	September 2008	September 2005	August 2005	September 2003	September 1961
	_	Locality	Tanauan, Leyte	Basey, Samar	south of Cairns, northeast Queensland, Australia	Galveston and San Luis Islands, Texas	McFaddin National Wildlife Refuge, Texas	Constance Beach, Louisiana	Ocean Spring and St. Andrews, Mississsippi	Hatteras Is., North Carolina	Matagorda Peninsula, Texas
	Local setting	Coastal geomorphology	sandy beach coastal plain	sandy beach	sandy beach ridge plains	barrier islands (ridge and swale topography)	palustrine marshes and brackish lakes bounded by sandy beach with low foredunes	beach ridges separated by lo-lying, muddy marshes	salt marsh	barrier island with dunes	barrier island
		Ground surface elevation, m (asl)	1.5 to 2 m	2 to 3 m	ridge crests at higher than 4 to 5 m	0.75 to 2.2 m	1 to 2 m	0.5 to 1 m (ridges)	1.7 to 5 m	dunes at 3 to 4 m	
ology	Ŋ	Peak Intensity	Cat 5 (895 hPa; ~314 kph)	Cat 5 (895 hPa; ~314 kph)	Cat 5 (929 hPa ~205kph)	Cat 4 (231 kph)	Cat 4 (231 kph)	Cat 5 (897 hPa; 288 kph)	Cat 5 (902 hPa; 280 kph)	Cat 4 (>270 kph)	Cat 5 (280 kph)
	<u>e</u>	Intensity at landfall	Cat 5 (~296 kph)	Cat 5 (~296 kph)	Cat 5	Cat 2 (175 kph)	Cat 2 (175 kph)	Cat 3 (190 kph)	Cat 3 (920 hPa; 200 kph)	Cat 2	Cat 5 (280 kph)
	eor	Translation speed	41 kph	41 kph		20 kph	20 kph	19 kph	24 kph		
	Met	References	Tagaki et al., 2015	Tagaki et al., 2015	Boughton et al., 2011	Doran et al., 2009; Morton & Barras, 2011	Doran et al., 2009; Morton & Barras, 2011	Williams, 2009; Morton & Barras, 2011	Morton & Barras, 2011	Morton et al., 2007	Morton et al., 2007
	suo	Maximum water level (m)	5 to 6 m	5 to 6 m	3 to 6 m	3-4 m	> 3 m	4 to 5 m	~7 m	2.7 m (open-coast); >3m to 4 m	3 to 4 m
	onditio	Flow depth (m)	3 to 4 m	3 to 4 m		1 to 4 m		at least 3 m	5 to 6 m	1.26 m (landward limit overwash deposition)	1 to 1.5 m
Hydrodynamic co	mic co	Inundation duration	~ 1 hour	~ 1 hour	12 hrs (peak inundation lasting for 2 hrs)	2 days of flooding	2 days of flooding	6 hours	~ 24 hrs	9 hrs (with peak inundation lasting for 5 hrs)	24 hrs
	ynai	Inundation distance	2 km	800 m	500 m		25 km		725 to 780 m (< 1 km)	15 to 30 km	15 to 35 km
	drod	Distance from storm eye (zone of max winds)	15 km	30 km	20-40 km	25 to 50 km	~70 km	35 km	40-50 km	55 km	60 km
	f	References	Soria et al., 2016	Soria et al., 2016	Boughton et al., 2011; Nott et al 2013	Hawkes and Horton, 2012; Doran et al., 2009	Williams, 2010; Doran et al., 2009	Williams, 2009; McGee et al., 2013	Fritz et al., 2007; Horton et al., 2009	Morton et al., 2007	Morton et al., 2007
		Vertical grading of entire deposit	Unit 1 (sand sheet to mud): coarsening upward Unit 2 (washover terrace): coupled fining and coarsening upward	: no analysis	fining upward with fine- skewed trends	coarsening upward; alternate coarsening and fining upwards	no analysis	Unit A (sand sheet): coarsening upward Unit b (washover terrace): coarsening upward	massive	cycles of upward coarsening or upward fining	upward fining
res	e	Lateral grading	overall landward fining	overall landward fining	landward fining in one site, no systematic trend in another site	not indicated	thinning and fining inland	inland fining only on the distal deposit	no transect data		landward fining
rtuctu	ih Sca	Sorting	moderate to well-sorted	poorly sorted	not reported	not reported	not reported	well sorted	not reported	well sorted	poorly sorted (proximal) to well sorted (distal)
as and s	Trend	Thickness	2 cm (distal) 10-20 cm (proximal)	2 to 8 cm	5 cm (87 m from shore); 20- 50cm (50 m from the shore)	2 cm to 28 cm	51-64 cm (within 200 m); 3-10 cm (>200 m)	2 to 50 cm	9 to 13 cm	40-97 cm (2 m thick overwash terrace)	at least 25 to 30 cm
ary textures		Sedimentary structures	Unit 1: massive to horizontal planar laminae Unit 2: subhorizontal planar laminae	massive	horizontal planar laminations; basal coarse grained sediments	not indicated	ripple marks on the surface	Unit A: planar laminae Unit B: foreset laminae	not indicated	subhorizontal planar stratification	planar parallel laminae
limen		Basal contact	sharp, depositional	sharp, depositional	sharp ,erosional	sharp, depositional with little or no erosion	sharp	sharp, erosional	sharp, erosional	sharp	sharp, erosional and depositional
Sedir nsect Scale	ansect Scale	Cross-shore geometry	washover terrace (proximal); sand sheet to mud (distal) with varying thickness landwards but generally thick in depressions	overall but not systematic landward thinning	highly variable thickness	landward thinning; thicker deposits on the swales	fining and thinning landward	landward thinning	no transect data	narrow thick terrace deposits terminating in avalanche faces	narrow thick terrace deposits, moderately thin broad fans, landward thinning
	Ĕ	Inland extent	1.6 km	350 m	up to 87 m	110 to 320 m	2700 m	400 to 500 m	not reported	up to 250 m	average at 193 m, up to 930 m
		References	This Study	This Study	Nott et al., 2013	Hawkes and Horton, 2012	Williams, 2010	Williams, 2009	Horton et al., 2009	Morton et al., 2007	Morton et al., 2007

	Inundation Events 2013 Typhoon Haiyan storm surge			2011 Tohoku-ok	i Tsunami	2006 Western Java Tsunami
ting	Locality	Tanauan, Leyte	Basey, Samar	Sendai Plain	Arahama coast, Sendai Plain	Adipala, central Java, Indonesia
cal Set	Coastal geomorphology	sandy beach with berms and coastal plain at 1.5 to 2 m asl	sandy beach at 2 to 3 m asl	sandy beach ridge and swales; with coastal dikes	coastal lowland with beach ridges	beach ridge-swale plain
Loc	Ground surface elevation, m (asl)	1.5 to 2 m	2 to 3 m	< 5 m	0 to 3 m	0.5 to 7 m
su	Maximum surge height or tsunami height, m absl	5 to 6 m	5 to 6 m	6 to 20 m	10 m	
nditio	Flow depth (m, above ground surface)	3 to 4 m	3 to 4 m	2 to 6 m	5 m	5 m
ic co	Inundation duration, hours	~ 1 hour	~ 1 hour	14 significant waves offshore with coastal fl	ooding lasting for at least 3 hrs*	
nam	Inundation distance	2 km	800 m	600 m to 4 km	4 km	755 m
drody	Water Velocity (m/s)	3 to 4 m/s*		~2m/s (2km from the coast); 6 to 8 m/s (with		
Hye	References	Soria et al., 2016 *Ramos et al., unpublished report	Soria et al., 2016	Abe et al., 2012; *Sugawara & Goto, 2012; **Hayashi & Koshimura, 2012	Takashimizu et al., 2012;	Moore et al., 2011
ures	Vertical grading of entire deposit	Unit 1 (sand sheet to mud): coarsening upward Unit 2 (washover terrace): coupled fining and coarsening upward	no analysis	sand-dominated base capped by mud layer	normal grading	coarsening then fining upward in 2 distinct pulses
struct	Lateral grading	overall landward fining	overall landward fining	sand-dominated (up to 2 km); mud- dominated (>2 km)	landward fining	overall landward fining
s and s	Thickness (cm)	2 cm (distal) 10-20 cm (proximal)	2 to 8 cm	10 to 40 cm (1 to 2 km from the shore); sub- mm to 5 cm (>2 km)	<10 cm	10 to 20 cm (70 m from shoreline), 1 mm to 1.5 cm (>300 m)
ry textures	Sedimentary structures	Unit 1: massive to horizontal planar lamination Unit 2: subhorizontal planar laminae	massive	mostly massive, at some sites parallel laminae and rip-up clasts are present	massive sand, parallel laminae, rip- up clasts	planar laminae
lenta	Basal contact	sharp, depositional	sharp, depositional	sharp, rip-up clasts indicates erosion	sharp, erosional	sharp, minimal erosion
Sedim Transect Scale	Cross-shore geometry	washover terrace (proximal); sand sheet to mud (distal) with varying thickness landwards but generally thick in depressions	overall but not systematic landward thinning	landward thinning	overall but not systematic landward thinning	overall but not systematic landward thinning (thickest within 300 m from shore)
	Inland extent	1.6 km	350 m	600 m to 4 km	~4 km	720 m
	References	This Study	This Study	Abe et al., 2012	Takashimizu et al., 2012	Moore et al., 2011

Table 3. Comparison of the hydrodynamics and sedimentary signatures of the Typhoon Haiyan storm surge, and two recent tsunami deposits from the 2011 Japan tsunami, and the 2006 Indonesia tsunami.

		Inundation Events 2013 Typhoon Haiyan storm surge		2004 Indian Ocean Tsunami					
bu		Locality	Tanauan, Leyte	Basey, Samar	Banda Aceh, Indonesia	Langkawi, Malaysia	Penang, Malaysia	Kalpakkam and Nagipattinum,	Yala, Sri Lanka
al Setti		Coastal geomorphology	sandy beach with berms and coastal plain at 1.5 to 2 m asl	sandy beach at 2 to 3 m asl	narrow beaches bounded by headlands	narrow, steep beach with intertidal zone	narrow, steep beach with intertidal zone	narrow beaches with coastal dunes	narrow sandy beaches bounded by sand dunes
Local		Ground surface elevation, m (asl)	1.5 to 2 m	2 to 3 m	4 to 35 m	0.1 to 3 m	0.5 to 3 m	< 5 m	0 to 4.5 m
sı		Maximum surge height or tsunami height, m absl	5 to 6 m	5 to 6 m		4 m	2 m	6.5 to 11 m	5 m
ndition		Flow depth (m, above ground surface)	3 to 4 m	3 to 4 m	> 25 m			2 to 4 m	4-5 m
ic cor		Inundation duration, hours	~ 1 hour	~ 1 hour		1hr 40 min (Bird et al., 2007)		3 waves at 5-min interval in Kalpakkam coast	
ynam		Inundation distance	2 km	800 m	450 m	250 m	1.5 km	30 to 850 m	900 m
/drod		Water Velocity (m/s)	3 to 4 m/s* (Ramos et al., unpublished)		10 m/s			> 3 m/s	
Í		References	Soria et al., 2016	Soria et al., 2016	Moore et al., 2006	Hawkes et al 2007	Hawkes et al 2007	Srinivasalu et al., 2007; Switzer et al., 2012	Morton et al., 2008
uctures Scale		Vertical grading of entire deposit	Unit 1 (sand sheet to mud): coarsening upward Unit 2 (washover terrace): coupled fining and coarsening upward	no analysis	massive units exhibiting normal grading	1 fining upward sequence	coarsening upward sequence	massive but graded units, coarsening and fining upward; dominantly fining upward in Kalpakkam	overall but not systematic fining upward
	Scale	Lateral grading	overall landward fining	overall landward fining	landward fining			landward fining	highly variable no predominant pattern; either coarsening or fining, but consistently poorer sorting landwards
es and st	Trench	Thickness (cm)	2 cm (distal) 10-20 cm (proximal)	2 to 8 cm	5 to 20 cm (within 50 to 400 m from the beach)	23 cm	15 cm	>10 cm to 40 cm	20 cm (within 150 m from beach) highly variable 2.5 to 22 cm (> 150m)
entary textures		Sedimentary structures	Unit 1: massive to horizontal planar lamination Unit 2: subhorizontal planar laminae	massive	palanr lamination, with 1 section exhibiting cross- stratification	contain shell fragments		parallel lamination on the basal unit, massive middle unit, and complex bedding such as cross lamination and micro bars on the uppermost unit	planar, horizontal to subhorizontal laminae
sedim		Basal contact	sharp, depositional	sharp, depositional	sharp, mimimal erosion	sharp	sharp	sharp	sharp, erosional
0	insect Scale	Cross-shore geometry	washover terrace (proximal); sand sheet to mud (distal) with varying thickness landwards but generally thick in depressions	overall but not systematic landward thinning	sand deposition started at 50 m to 200 m from the beach, thick on topographic lows			Kalpakkam: variable thickness and can be patchy near the the coast then tapers inland to nearly tabular; Nagipattinum: landward thinning	overall but not systematic landward thinning, thick deposits in topographic lows
	Tra	Inland extent	1.6 km	350 m	400 m			350 m	400 m
		References	This Study	This Study	Moore et al., 2006	Hawkes et al 2007	Hawkes et al., 2007	Srinivasalu et al., 2007; Switzer et al., 2012	Morton et al., 2008

Table 4. Comparison of the hydrodynamics and sedimentary signatures of the Typhoon Haiyan storm surge and the 2004 Indian Ocean tsunami in Indonesia, Malaysia, India, and Sri Lanka.

		Inundation Events	2013 Typhoon Ha	iiyan storm surge			2004 Indian Ocean Tsu	Inami	
_		Locality	Tanauan, Levte	Basev, Samar	Nam Khem and Khao	Phra Thong Island.	Khao Lak. Thailand	Phi Phi Don, Thailand	Koh Lanta, Thailand
Setting				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Lak, Thailand	Thailand	,	.,	· · · · , · · · ·
al Set		Coastal geomorphology	sandy beach with berms and coastal plain at 1.5 to 2 m asl	sandy beach at 2 to 3 m asl	low-lying narrow coastal plain	beach-ridge plain	pocket beach in between limestone headlands	pocket beach in between limestone headlands	pocket beach in between limestone headlands
s Local \$		Ground surface elevation, m (asl)	1.5 to 2 m	2 to 3 m	4 to 5 m		< 7 m	0.2 to 4 m	0.1 to 3 m
nditions		Maximum surge height or tsunami height, m absl	5 to 6 m	5 to 6 m	6 to 10 m	20 m	8 m	9 m	6 m
		Flow depth (m, above ground surface)	3 to 4 m	3 to 4 m	2 m to 6 m				4 m to 5 m
ic co		Inundation duration, hours	~ 1 hour	~ 1 hour					
ynam		Inundation distance	2 km	800 m		2 km	1 km to 2 km	464 m	> 52 m
ydrod		Water Velocity (m/s)	3 to 4 m/s* (Ramos et al., unpublished)						
Ę		References	Soria et al., 2016	Soria et al., 2016	Hori et al., 2007	Jankaew et al., 2008	Hawkes et al., 2007	Hawkes et al., 2007	Hawkes et al., 2007
		Vertical grading of entire deposit	Unit 1 (sand sheet to mud): coarsening upward Unit 2 (washover terrace): coupled fining and coarsening upward	no analysis	multiple normal grading	overall upward fining	multiple fining upward sequences separated by med to coarse sand layers	2 fining upward sequences	1 fining upward sequence
structures	h Scale	Lateral grading	overall landward fining	overall landward fining	no clear trend, coarser grained occur within 600 m from shoreline, finer sediments occur landward				
es and s	Trenc	Thickness (cm)	2 cm (distal) 10-20 cm (proximal)	2 to 8 cm	>20 to 33 cm (topographic lows), <5 cm topographic highs	5 to 20 cm	15 cm	11 cm	30 cm
ntary textur		Sedimentary structures	Unit 1: massive to horizontal planar lamination Unit 2: subhorizontal planar laminae	massive	thin, planar	horizontal bedding			shell fragments present, assymetrical current ripples
dimer		Basal contact	sharp, depositional	sharp, depositional	sharp, erosional		abrupt and erosional	sharp and undulating	sharp
Sed	nsect Scale	Cross-shore geometry	washover terrace (proximal); sand sheet to mud (distal) with varying thickness landwards but generally thick in depressions	overall but not systematic landward thinning					
	Tra	Inland extent	1.6 km	350 m	1.1 km (bounded by scarps and hills)	>1 km < 2km			
		References	This Study	This Study	Hori et al., 2007	Jankaew et al., 2008	Hawkes et al., 2007	Hawkes et al., 2007	Hawkes et al., 2007

Table 5. Comparison of the hydrodynamics and sedimentary signatures of the Typhoon Haiyan storm surge and the 2004 Indian Ocean tsunami in Thailand.

Supplementary material for on-line publication only Click here to download Supplementary material for on-line publication only: Supplementary Material.pdf

Supplementary material for on-line publication only Click here to download Supplementary material for on-line publication only: Table S1-S4.xlsx

Supplementary material for on-line publication only Click here to download Supplementary material for on-line publication only: Table S5-S8.xlsx

Supplementary material for on-line publication only Click here to download Supplementary material for on-line publication only: Table S9-S11.xlsx