160 research outputs found

    Correlation of Rupture Life, Creep Rate, and Microstructure for Type 304 Stainless Steel

    Get PDF
    The stress and temperature sensitivites of the rupture life and secondary creep rate were examined in detail for a single heat of type 304 stainless steel (9T2796). Assuming that the rupture life has a power law stress dependency, relatively small differences in the stress exponent were observed over a broad range of stress and temperature. In contrast, large changes were observed for equivalent parameter for secondary creep rate. As a result of these differences, the Monkman-Grant correlation was sensitive to stress and temperature below 650 C. Metallurgical studies based on light and transmission electron microscopy suggested that the temperature and stress sensitivities of secondary creep rate at temperatures below 650 C were related to features of the substructure not present at higher temperature. Specifically, the presence of a fine dislocation network stabilized by precipitates altered the stress and temperature sensitivities relative to what might be expected from high temperature studies

    Correlations Between Metallurgical Characterization Studies, Exploratory Mechanical Tests, and Continuum Mechanics Approaches to Constitutive Equations

    Get PDF
    Austenitic stainless steels, such as types 316 and 304, are widely used as pressure vessel materials in the temperature range of 425 to 650 C. Stainless steel specimens were tested to rupture at two different stress levels sigma and sigma 2 sigma 1 sigma 2) to establish the normal stain-time behavior. A subsequent test was performed in which the specimen was crept at the higher stress (sigma 1) to the beginning of the secondary stage of creep, presumed to be the strain/time conditions at which a steady state microstructure is developed, and then the stress was reduced to the lower level (sigma 2). The associated microstructure, and significance of this microstructure on the creep strain-hardening model for variable uniaxial loads were assesed and found to be consistent with the use of creep-recovery models at high stresses and temperatures and strain-hardening models at low stresses and tempertures

    Applications of elastic-viscoplastic constitutive models in dynamic analyses of crack run-arrest events

    Get PDF
    Applications of nonlinear techniques to the first series of six HSST wide-plate crack-arrest tests that were performed are described. The experiments include crack initiations at low temperatures and relatively long (20 cm) cleavage propagation phases which are terminated by arrest in high temperature regions. Crack arrest are then followed by ductile tearing events. Consequently, the crack front regions are exposed to wide ranges of strain rates and temperatures

    Current activities in standardization of high-temperature, low-cycle-fatigue testing techniques in the United States

    Get PDF
    The American Society for Testing and Materials (ASTM) standard E606-80 is the most often used recommended testing practice for low-cycle-fatigue (LCF) testing in the United States. The standard was first adopted in 1977 for LCF testing at room temperature and was modified in 1980 to include high-temperature testing practices. Current activity within ASTM is aimed at extending the E606-80 recommended practices to LCF under thermomechanical conditions, LCF in high-pressure hydrogen, and LCF in metal-matrix composite materials. Interlaboratory testing programs conducted to generate a technical base for modifying E606-80 for the aforementioned LCF test types are discussed

    Data requirements to model creep in 9Cr-1Mo-V steel

    Get PDF
    Models for creep behavior are helpful in predicting response of components experiencing stress redistributions due to cyclic loads, and often the analyst would like information that correlates strain rate with history assuming simple hardening rules such as those based on time or strain. On the one hand, much progress has been made in the development of unified constitutive equations that include both hardening and softening through the introduction of state variables whose evolutions are history dependent. Although it is difficult to estimate specific data requirements for general application, there are several simple measurements that can be made in the course of creep testing and results reported in data bases. The issue is whether or not such data could be helpful in developing unified equations, and, if so, how should such data be reported. Data produced on a martensitic 9Cr-1Mo-V-Nb steel were examined with these issues in mind

    Assessment of Existing Alloy 617 Data for Gen IV Materials Handbook

    Get PDF
    This report talks about Assessment of Existing Alloy 617 Data for Gen IV Materials Handboo
    corecore