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Iterative Seismic Data Interpolation Using Plane-wave

Shaping

Ryan Louis Swindeman, M.S.Geo.Sci.
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Supervisor: Sergey Fomel

Geophysical applications often require finding an appropriate solution to an

ill-posed inverse problem. An example application is interpolating irregular or sparse

data to a regular grid. This data regularization problem must be addressed appropri-

ately before many data processing techniques can begin. In this thesis, I investigate

plane-wave shaping in two and three dimensions as a data regularization algorithm,

which can be used for the interpolation of seismic data and images.

I use plane-wave shaping to interpolate several synthetic and field datasets

and test its accuracy in image reconstruction. Because plane-wave shaping adheres

to the direction of the local slopes of an image, the image-guided interpolation scheme

attempts to preserve information of geologic structures. I apply several alternative

interpolation schemes — formulated as an inverse problem with a convolutional op-
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erator to constrain the model space — namely: plane-wave destruction, plane-wave

construction, and prediction-error filters. Investigating their iterative convergence

rates, I find that plane-wave shaping converges to a solution in fewer iterations than

the alternative techniques. I find that the only required parameter for this method,

the smoothing radius, is best chosen to be approximately the same size as the holes

for missing-data problems. The optional parameter for edge padding is best selected

as approximately half of the smoothing radius. Applications of this research project

include potential applications in well-log interpolation, seismic tomography, and 5-D

seismic data interpolation.
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Chapter 1

Introduction

One of the most common problems that geologists and geophysicists routinely

face is dealing with insufficient or irregular data. For instance, regions of coverage

might be omitted during the acquisition of seismic data because of physical obstacles

or hardware malfunction. For seismic data, experiments can produce only a discrete

set of known values, and complication lies in the fact that there is an infinite number

of ways to fill these gaps. A reasonable solution should be constrained to follow

expected patterns. Data regularization (e.g., gridding) refers to the action of mapping

and interpolating irregular data to a regular grid (Daley, 1993; Li and Gotze, 1999;

Fomel, 2000). Throughout this thesis, I treat data regularization and interpolation

as an inverse problem involving a convolutional operator (Claerbout, 1992, 1999;

Claerbout and Fomel, 2014).

Data regularization has many important applications. One such use is finding

missing information that was not gathered during seismic data acquisition, leaving

behind irregularly sampled zones. In the case of geophysical exploration, returning to

re-shoot seismic data or gathering more well logs can often be prohibitively expensive

(Boreham et al., 1991; Stone, 1994). To make the best of this situation, data regu-

larization can be used to synthetically fill holes in the data using information from

known points. Another application is using data regularization to adjust irregularly
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sampled data to a regular grid in order to prepare the data for further processing.

This step is necessary, for example, to account for feathering of streamers during ma-

rine acquisition. Other potential applications include well-log interpolation (Clapp

et al., 1998; Clapp, 2000), seismic tomography (Clapp et al., 2004; Woodward et al.,

2008), and 5-D interpolation (Stanton and Sacchi, 2012; Gao et al., 2015).

Known problems exist with some popular interpolation schemes. For the it-

erative process associated with these methods, the convolutional operator should be

appropriately anisotropic. By using an isotropic filter (such as a Laplacian), smearing

happens in all directions equally, which may compromise the geologic structure of the

initial image. The plane-wave techniques used in this thesis direct the regularization

along the data’s local slopes.

The main objective of this thesis is to investigate the strength of plane-wave

shaping (PWS) as a data regularization technique, specifically through testing its

ability to preserve structural information, provide a natural extension to higher di-

mensions, and converge in few iterations.

In order to test the effectiveness of the PWS algorithm, I directly compare it

with several alternative interpolation methods by applying each to several datasets,

both synthetic and real. In doing so, an analysis of the iterative convergence rate

and reconstruction accuracy is performed. I test the interpolation schemes on 2-D

and 3-D synthetic and field-data examples. Additionally, I investigate the sensitivity

of PWS to external padding size, the smoothing radius parameter, and data-gap

size. I explore the computational cost of the current implementation of PWS and its

sensitivity to various parameters.
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THESIS OUTLINE

Chapter 2 is dedicated to a review of several alternative interpolation strategies

that historically preceded PWS and are used throughout this work as a basis for

comparison. The schemes reviewed are PWD, plane-wave construction (PWC), and

prediction-error filters (PEFs). I analyze the definition and theory of each.

In Chapter 3, I walk through the theory of shaping regularization (Fomel,

2007) from which PWS is derived. I examine the impulse response of PWS and

compare it with those of the other methods. In a synthetic test, I create an artificial

ellipsoid-shaped hole in the image and attempt to fill it without prior knowledge of

the dip field. In the final tests, I heavily decimate seismic data to simulate well logs.

Using the seismic dip field, these synthetic logs are interpolated and compared with

the original seismic image for accuracy.

Chapter 4 tests the ability of PWS to interpolate data without a known solu-

tion. The missing pieces of three real datasets — the 2-D SeaBeam water-depth data,

the 3-D P-cable seismic survey, and the 3-D Blast dataset — are constructed and an-

alyzed. These tests illustrate how interpolation can be used in practical situations

where missing data are simply unavailable.

In Chapter 5, I show the application of PWS to an image-guided implementa-

tion of the Sobel filter (Phillips et al., 2015), borrowed from an edge detector in the

field of image processing. This procedure can be used as a way to efficiently detect

faults. I also make some suggestions for other applications of PWS in future research.

In Chapter 6, I summarize the work presented in this thesis and discuss the

results. I draw conclusions about the efficacy of PWS as an interpolation technique

3



in comparison with the alternative methods. The choice of a method should take into

account the reconstruction accuracy/plausibility of the interpolated datasets along

with the knowledge of iteration rate and parameter sensitivity.
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Chapter 2

Review of Existing Interpolation Strategies

Many options exist in choosing an appropriate interpolation scheme for dealing

with missing seismic data. The most common and simplest of these is interpolating

in the inline or cross-line directions. Plane-wave shaping, an image-guided technique,

has the added benefit of preserving structural information by moving along the local

slopes of seismic events.

In this chapter, I discuss some of the interpolation strategies, alternative to

plane-wave shaping (PWS), which together with PWS are used throughout this thesis.

I discuss the history, benefits, and disadvantages of each of them and explore the

theory from which their respective strengths and weaknesses arise.

INVERSE PROBLEMS

Each of the methods can be thought of as solving the inverse problem with

objective function

min
m
||d− Lm||22 . (2.1)

The data, d, that is given at the beginning is the “measured”, irregular data, possibly

containing large holes. The goal is to find the model parameters in vector m, (i.e.,

the regular data). In the case of missing data, the forward operator, L, which maps
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m to d, corresponds to simple masking.

Because of the ill-posed nature of many inverse problems, introducing a reg-

ularization term is necessary for constraining model parameters. An example im-

plementation of Tikhonov regularization adds a term to the objective function to

penalize steep slopes in the model space, morphing Equation 2.1 into

min
m
||d− Lm||22 + ε ||∇m||22 , (2.2)

in order to produce a smoother model. The sensitivity of this smoothing effect is

controlled by regularization parameter ε. Two possible choices for finding this pa-

rameter are the Morozov discrepancy criterion (Morozov, 1971) or the L-curve method

(Hansen, 1992). The Morozov discrepancy criterion states

||d− Lmα|| ≤ δ, (2.3)

meaning that the apparent noise level δ bounds the norm of the misfit. The L-curve

method populates a plot of ||m|| versus the norm of the misfit. Then, ε is selected

near the elbow that typically appears in this plot relatively close to the origin.

Everywhere that a solution to the inverse problem is attempted iteratively,

there exists a choice in algorithm to approach the minimum. In PWS, a conjugate-

gradient (CG) scheme is employed (Hestenes and Stiefel, 1952).

When dealing with an over-determined system, the least-squares solution takes

the form

m̂ =
(
LTL

)−1
LTd, (2.4)

where LT is the adjoint of L, and m̂ is a vector of the estimated model parameters.
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Currently four choices of regularization techniques are available for inversion

with seismic data: Tikhonov regularization (Tikhonov, 1963), model reparameteriza-

tion (Harlan, 1995), shaping regularization (Fomel, 2007), and sparse regularization

(Tibshirani, 1996). These styles of regularization are closely related to the interpola-

tion techniques used in this thesis, barring sparsity, which itself is a very active area

of research with application in many fields (Bhandari et al., 2014; Ding and Selesnick,

2015; Luo et al., 2015).

PREDICTION-ERROR FILTERS

Prediction-error filters (PEFs) are applied using the simple convolution equa-

tion

f ∗ d = r, (2.5)

or equivalently in matrix form,

Fd = r, (2.6)

for the filter f and prediction-error (residual) r, which is minimized in the least-squares

sense. By applying a PEF, the predictable parts of the data are removed, leaving only

the unpredictable signal, meaning the error components are uncorrelated, so

I = E
[
rrT
]

= E
[
FddTFT

]
= FE

[
ddT

]
FT , (2.7)

leading to

E
[
ddT

]
= (FTF)−1, (2.8)

for E
[
ddT

]−1
the inverse of the autocorrellation or covariance matrix of d.

In practice PEFs are used for predictive deconvolution to remove the pre-

dictable events (such as multiples) from seismic data and leave behind the reflections

(Yilmaz, 2001).
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PLANE-WAVE DESTRUCTION

The original plane-wave destruction (PWD) filters were developed by Claer-

bout (1992). Applying PWD filters has been shown to be a powerful tool for slope

estimation, noise attenuation, fault detection, and data interpolation (Fomel, 2002).

PWD filters are the time-distance (T-X) analogs of frequency-distance (F-X) PEFs.

The derivation of this technique, outlined by Fomel (2002), is based on the local

plane-wave equation (Claerbout, 1992):

∂P

∂x
+ σ

∂P

∂t
= 0, (2.9)

for a wavefield P (t, x) and local slope σ. Under the Fourier transform, this becomes

dP̂

dx
+ iωσP̂ = 0 (2.10)

P̂ (x) = P̂ (0) eiωσx, (2.11)

in the frequency domain for stationary σ. Noticing the form of this solution, the

operator that carries x to its neighbor (for integer x) is just a multiplicative factor of

the complex exponential, from

P̂ (x) = P̂ (0) eiωσ(x−1) eiωσ = eiωσP̂ (x− 1), (2.12)

which represents a two-point F-X PEF. In extension to the time domain, the analog

of the complex exponential is convolving with an all-pass filter which amounts to

applying 2-D filters (in Z-transform notation) of the form

A(Zt, Zx) = 1− Zx
B(Zt)

B(1/Zt)
, (2.13)

where filter A corresponds to a plane wave and B is a centered three-point filter. In

the matrix form, this can be visualized more intuitively as a matrix multiplication
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D =


I 0 0 · · · 0

−P1,2 I 0
. . .

...

0 −P2,3 I
. . . 0

...
. . . . . . . . . 0

0 · · · 0 −PN−1,N I


for prediction operator Pa,a+1, mapping a trace to an adjacent trace (Fomel and

Guitton, 2006; Fomel, 2010). How an adjacent trace is predicted and subtracted from

the original is now evident. In that sense, PWD can be thought of as an analog of

differentiation based on the corresponding Z-transform (Fomel and Claerbout, 2003).

Fomel (2002) describes estimating local slopes, ultimately by means of solving

an inverse problem by minimizing in a least-squares sense the difference

dC

dσ

(
σ0

)
∆σd−C(σ0)d, (2.14)

which is a linearization of the destruction objective, C(σ) ≈ 0, for σ (slope) using d

(data) and C (operator of convolving the data with the PWD filter). This is the dip

estimation technique used throughout the thesis to estimate the local slope of data

and images. PWD can be used as a model-roughening operator (G) in Tikhonov’s

regularization with objective function

||d− Lm||22 + ||G(m)||22 , (2.15)

where L is the forward modeling operator for m, the vector of model parameters, and

d is the data. G(m) replaces the gradient operator in Equation 2.2.

Recent advancements in PWD filters have been made with the advent of ac-

celerated PWD (Chen et al., 2013a) and omnidirectional PWD (Chen et al., 2013b).
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PLANE-WAVE CONSTRUCTION

Plane-wave construction (PWC) was introduced by Fomel and Guitton (2006)

as a strategy for producing data in a local-slope direction. PWC has been used as

an effective tool for interpolation of missing data, coherency enhancement, multiple

suppression, and velocity estimation. The PWC operator is defined simply as the

inverse of the PWD operator. In other words, traces (s) are formed from construction

(C ≡ D−1) of the destruction residual (r):

r = Ds ⇔ s = Cr. (2.16)

In matrix form, the construction operator is

C =


I 0 0 · · · 0

−P1,2 I 0
. . .

...

0 −P2,3 I
. . . 0

...
. . . . . . . . . 0

0 · · · 0 −PN−1,N I



−1

(2.17)

=


I 0 0 · · · 0

P1,2 I 0
. . .

...

P1,3 P2,3 I
. . . 0

...
. . . . . . . . . 0

P1,N · · · PN−2,N PN−1,N I

 , (2.18)

taking the form of a blocked lower triangular matrix. In this form, applying PWC can

look like recursive integration. PWC can be used as a tool for model reparameteriza-

tion. Fomel and Guitton (2006) use PWC operator C to act on the reparameterized

model p

d = Lm = LCp. (2.19)

I use this guidance to rederive PWC by addressing this problem as an under-determined

least squares optimization. Under-determined least squares reparameterization works
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by substitution of an attempted solution

p = (LC)Ty, (2.20)

for an unknown vector y into

d = LCp = LC(LC)Ty = LCCTLTy, (2.21)

which, when inverted with a regularization parameter ε, becomes

y = (LCCTLT + ε2I)−1d (2.22)

⇒ p = (LC)T (LCCTLT + ε2I)−1d = CTLT (LCCTLT + ε2I)−1d (2.23)

⇒m = CCTLT (LCCTLT + ε2I)−1d. (2.24)

This formulation of the model parameters provides a solution to the inverse problem.
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Chapter 3

Seismic data interpolation using plane-wave shaping
regularization

1

The problem with interpolating insufficient, irregularly sampled data is that

there exist infinitely many solutions. When solving ill-posed inverse problems in geo-

physics, one can apply regularization to constrain the model space in some way. I pro-

pose to use plane-wave shaping in iterative regularization schemes. By shaping locally

planar events according to the local slope, regularization can effectively interpolate

in the structure-oriented direction and preserve the most geologic dip information. In

my experiments, this type of interpolation converged in fewer iterations than alterna-

tive techniques. The proposed plane-wave shaping could have potential applications

in other problems such as seismic tomography and well-log interpolation.

INTRODUCTION

Choosing the most appropriate interpolation scheme to cope with insufficient

seismic data can be challenging. Often the simplest direction in which I choose to

interpolate is the inline or cross-line direction. This strategy can be improved by

interpolating along seismic horizons to preserve structural information.

1Parts of this chapter appear in (Swindeman and Fomel, 2015)
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Previous work taking geologic structure into account for tomography appli-

cations was done by Clapp et al. (2004) by using space-varying steering filters.

Structure-oriented filters can be applied to a seismic image to improve interpreta-

tion (Fehmers and Höcker, 2003; Liu et al., 2010). Blended-neighbor interpolation

was developed by Hale (2009, 2010). This method interpolates borehole data across

seismic data to a 3-D grid and can be extended to the image domain (Naeini and

Hale, 2014).

Regularization is a technique to constrain model parameters for inversion.

Solving ill-posed, seismic inverse problems offers several choices in the form of regular-

ization (Engl et al., 1996; Zhdanov, 2002). The well-known and widely used Tikhonov

regularization (Tikhonov, 1963) is reliable but can cause slow convergence because it

conflicts with the main goal of the data misfit term in the objective function (Harlan,

1995). For seismic events with a dominant local slope, an appropriate operator for

Tikhonov regularization is plane-wave destruction (PWD). Model reparameterization,

another regularization style, encourages a certain behavior by applying a precondi-

tioning operator (Fomel and Claerbout, 2003). The analog for local plane-wave events

is plane-wave construction (PWC) which is the mathematical inverse of the PWD op-

erator (Fomel and Guitton, 2006). A simpler form of PWC is the steering filters of

Clapp et al. (1998, 2004). PWD and PWC are described in detail in the previous

chapter.

In this chapter, I investigate a different form of regularization: plane-wave

shaping (Fomel, 2007) and investigate the properties of plane-wave shaping (PWS)

regularization on a 2-D synthetic example, a 3-D synthetic example, and 3-D field

data. I heavily decimate the input data and test several interpolation schemes. By

comparing the data misfit as a function of iteration number, I find that using shaping
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regularization along structure achieves an accurate solution in fewer iterations than

the alternative regularization methods, PWD and PWC.

Because of the generality of using plane-wave shaping to implement regular-

ization, this method could have utility in many areas of geophysics. Estimating

a trustworthy velocity model in reflection seismology is one such inverse problem

(Clapp et al., 2004; Woodward et al., 2008).

PLANE-WAVE SHAPING

The general formulation of linear shaping regularization is (Fomel, 2007)

m̂ =
[
I + S

(
LTL− I

)]−1
SLTd (3.1)

where m̂ is a vector of model parameters; S is the shaping operator; d is the data;

and L and LT are the forward and adjoint operators, respectively. In interpolation

problems, L is forward interpolation (in the case of irregular sampling) or simple

masking (in the case of missing-data interpolation on a regular grid). In 1-D, shaping

in the Z-transform notation can be triangle smoothing (Claerbout, 1992)

Tn =
1

n2

(
1− Zn

1− Z

)(
1− Z−n

1− Z−1

)
(3.2)

for a given smoothing radius n. One can visualize this as a convolution of two box

filters producing a weighting triangle with a neighborhood radius of n. Increasing

n produces a smoother model. In 2-D, the shift operator Z translates into shifts of

traces along local slope. 1 − Z corresponds to PWD (which can be thought of as a

differentiation) while its inverse operator 1
1−Z = 1 +Z +Z2 + ...+Zn corresponds to

PWC (similar to integration).
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INTERPOLATION TESTS

Interpolation is a simple example of a geophysical inverse problem (Claerbout,

2014). The two prerequisites for local plane-wave interpolation are simply the sparse

data that are to be interpolated and the structure to which the reconstruction is

shaped. In the following examples, I start with a seismic image and find the its

local slope. I apply a mask to the image, leaving behind only a few nonzero traces.

Following Clapp et al. (1998, 2004), I call these traces “wells” as a reference to

the applicability of this method to well log data that might be desired everywhere

but only provided in certain locations. Thus, the two inputs are the wells (to be

interpolated) and the dip field (giving the direction of interpolation). By comparing

the reconstruction to the original (non-sparse) data, I quantify the quality of the

interpolation by measuring the model error.

2-D synthetic test

The quarterdome (Qdome) 3-D seismic image was created by Claerbout (1993).

This model has been used for previous interpolation tests including those using both

local plane-wave prediction filters (Fomel, 1999) and steering filters (Clapp et al., 1998;

Clapp, 2000). The model and corresponding dip field are displayed in Figure 3.1 along

with the decimated well data and local slope calculation. In order to demonstrate

the local properties of PWS, its impulse response is shown along with those for PWD

and PWC. Adding spikes to 50 random locations in the image and applying the

operators produces the anisotropic response aligned with the local slope. A plot of

the convergence rates is given in Figure 3.3. PWS converges in far fewer iterations

— 6 as compared to the 55 required by PWD and 28 of PWC. By applying 2-D
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interpolation with PWD, PWC, and PWS; I show a side-by-side comparison of the

three methods after 60 iterations in Figure 3.4. All interpolation schemes produce

similar results. The error sections — Figures 3.4(b), 3.4(d), and 3.4(f) — indicate

comparable accuracy as well.

Figure 3.1: Synthetic example reproduced from Clapp et al. (2004). A 2-D slice of
the quarterdome — Qdome — synthetic seismic image is given in (a) from which (b)
the decimated data — wells — and (c) the dip field are derived. The nine traces were
preserved in the application of the mask to produce the wells, and (c) is found by

taking the local slope. ch03-pws/qdome q-reflectors2
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Figure 3.2: 2-D impulse responses. 50 spikes are placed randomly through the
Qdome model and hit with the operators of (a) PWD, (b) PWC, and (c) PWS.

ch03-pws/qdome q-impulses
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Figure 3.3: Convergence rate for 2-D synthetic example. This plot shows a
comparison of the model error (2-norm) versus iteration number. The points
denoted with “s” are derived from interpolation using PWS. The symbols “d”
and “c” correspond to the same calculation using PWD and PWC, respectively.
ch03-pws/qdome q-Matrix1Comparison
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Reconstruction of 2-D synthetic data with interpolation from (a)
plane-wave destruction, (c) plane-wave construction, and (e) plane-wave shap-
ing. Parts (b), (d), and (f) correspond to the respective data misfit, com-
puted with ||d− di||22 for the true solution d and reconstruction di at itera-
tion i. Convergence was reached after 55, 28 and 6 iterations, respectively.
ch03-pws/qdome q-compa,q-compd,q-compb,q-compe,q-compc,q-compf
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(a) (b)

(c) (d)

Figure 3.5: 3-D missing data fill. The original Qdome synthetic is shown in
(a) and again in (b) with an ellipsoid-shaped hole of missing data. The re-
constructions using PWS and PWD are shown in (c) and (d), respectively.

ch03-pws/qdome3 q3-orig,q3-hole,q3-PWS,q3-PWD

20



3-D synthetic test

In this experiment, I use the 3-D version of the Qdome seismic image and cut a

large ellipsoid-shaped hole in the data. Using only this information, I can see how well

applying 3-D PWS is able to reconstruct the original data without knowing the full

original dip field. By finding the local slope of the masked image, PWS interpolation

can then be applied. These local slopes are displayed in Figure 3.6 as the inline and

cross-line components. The 3-D impulse response is shown in Figure 3.7 and shows

the shaping of information to the synthetic geologic structure in 3-D. Figure 3.5 shows

the data (a) originally, (b) with the mask applied, and (c) with reconstruction. The

resulting interpolation accurately patches the hole. The only area where the result

mildly deviates from the answer is adjacent to the fault. Here, PWS smooths over

the fault to make it somewhat more continuous.

(a) (b)

Figure 3.6: Dip field of 3-D Qdome image with ellipsoid-shaped hole with the (a) inline

component and (b) cross-line component ch03-pws/qdome3 idip-q3hole,xdip-q3hole

21



Figure 3.7: 3-D impulse response. 20 spikes are randomly placed in the 3-D qdome
model. These peaks are smeared in a structure-guided fashion by 3-D PWS to produce
this image. ch03-pws/qdome3 q3-imp

Field data test

The Parihaka data is a 3-D (full-angle stack, anisotropic, prestack time-migrated)

seismic image from New Zealand provided for use by New Zealand Petroleum and Min-

erals. The data cube is shown in Figure 3.8(a). Similar to the synthetic test, I mask

the data, Figure 3.8(b), and interpolate using PWS. The interpolation results are

shown in Figure 3.8(c) with error section in 3.8(d). The residual was sufficiently low

after only 4 iterations. Because this scheme amounts to some quantity of smoothing,

the fault that propagates clearly in the original seismic image is now smeared. How-

ever, PWS continues to maintain the structural information of this fault’s existence

from the offset of beds.
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(a) (b)

(c) (d)

Figure 3.8: Field data interpolation example. The original data is depicted in (a)
and a mask, shown in (b), is applied to heavily decimate the input to create a set of
wells. (c) shows the interpolated result of PWS, and (d) is the difference between the
reconstruction and the original. The smallest-scale features and noise are removed as
a result of the smoothing. ch03-pws/parihaka p3-orig,p3-deci2,p3-shfill2,p3-sherr2
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CONCLUSIONS

Plane-wave shaping (PWS) is a powerful tool for constraining the solutions to

inverse problems that require conforming to a local plane-wave structure. The im-

pulse responses in both 2-D and 3-D verify this image-guided nature. I demonstrate

the effectiveness of PWS as an interpolation scheme using simple missing-data inter-

polation experiments on both field data and synthetic examples and show that the

method converges to a low misfit in fewer iterations than alternative regularization

schemes which use either PWD or PWC. The benefit of fast convergence comes from

the fact that oftentimes large-scale geophysical inverse problems can afford only a

small number of iterations. When stopping the inversion after only a small number of

iterations, PWS appears to produce a more accurate estimation of model parameters

than either PWD or PWC. PWS also has a more straightforward extension from 2-D

to 3-D. These properties give PWS high potential for geophysical applications beyond

simple interpolation.
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Chapter 4

Data Interpolation Experiments

INTRODUCTION

When data are missing from a seismic survey, interpolation can attempt to

fill the gaps with synthetic information. In this chapter, I apply plane-wave shaping

(PWS) in three blind tests: the SeaBeam image, the Blast seismic dataset, and

the P-cable marine seismic dataset. These experiments have not been deliberately

decimated to produce the holes to be filled by an interpolation scheme like that of the

previous experiments in Chapter 3. Instead, the datasets here all have missing data

because of trouble with the data’s acquisition, such as dealing with physical obstacles

or equipment malfunction. The same tests are then conducted for other interpolation

schemes: plane-wave destruction (PWD) and plane-wave construction (PWC). In this

chapter, I also investigate the parameter sensitivity and computational cost of PWS

and build random realizations of a reconstruction which capture textural information

comparing PWS and prediction-error filters (PEFs).

SEABEAM BENCHMARK DATA

The SeaBeam image, named after the instrument used to gather the data, is

a map of the water bottom along a seafloor spreading center. The SeaBeam image,

presented by Claerbout and Fomel (2014) and shown in Figure 4.1, is marked by

its irregular and sparse coverage, making it a great 2-D example for testing different
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interpolation schemes. This image specifically has very little information to be used in

constraining a solution near the upper and lower right corners of the survey. Tasking

PWS with interpolating this image pushes the algorithm to its limits, giving valuable

insight about its behavior and exposing possible limitations. For comparison, I test

the other interpolation schemes of PWD and PWC as well.

Figure 4.1: SeaBeam data ch04-p-cable/seab binseab

To begin, a mask (shown in Figure 4.2) is extracted from the data to be used

with the interpolation techniques in order to preserve the original data by reinstating

it after any possible corruption (e.g., smoothing). The plane-wave schemes work

using information derived from the local slope. This dip field is calculated in Figure

4.3. Even with smoothing, this image looks blotchy in the areas where information

concentration is highest and smeared to the top and right. With these prerequisites,

PWS, PWD, and PWC are all applied.

26



Figure 4.2: SeaBeam data mask ch04-p-cable/seab mask

Figure 4.3: Estimated local slope of the SeaBeam data ch04-p-cable/seab dip
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SeaBeam Results

For these tests, padding the sides of the data in all dimensions by 35 zeroed

traces was sufficient to remove the edge-effects of applying the filters. The reconstruc-

tions produced from interpolation using PWD, PWC, and PWS (with smoothing ra-

dius of 70) are shown in Figure 4.4. Notice the manifestation of original data’s holes

in the dip field (Figure 4.3). The plane wave techniques exhibit the same smearing

effect that was observed in the local slope calculation and struggle in these same

areas. They cannot operate effectively in large empty spaces because of the lack of

information which it would use to constrain a solution. As a result, the algorithms

behaves undesirably in these regions. In general, the plane-wave techniques all per-

form well and produce comparable results. Visibly, PWD and PWC experience a

high-wavenumber noise, notably in areas such as the triangular cavity and the lower

right corner of the image. PWS does not experience this phenomenon because of

its smoothing nature. As a result, the amplitudes that PWS produces are more

consistent in their plausibility than with the other techniques.

PWS PARAMETER INVESTIGATION

In this section, I explore the sensitivity of the key parameters which are used in

PWS. The first is the only required parameter, the smoothing radius. It governs how

many adjacent traces away to take information from when producing the interpolated

dataset for a given location at any iteration. I expected that the time per iteration

grows linearly with increased smoothing radius. To test this, at several smoothing

radii, the total duration for 100 iterations of PWS was recorded for the SeaBeam

dataset. These data are presented in Table 4.1. Notice that the total time and time
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(a) (b)

(c)

Figure 4.4: SeaBeam reconstruction using (a) PWD, (b) PWC, and (c) PWS

ch04-p-cable/seab real-pwd,real-pwc,real-pws-ns70pad35
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per iteration grow linearly with increasing radius nr, showing that the computation

time is O(nr) concerning only the radius.

Table 4.1: Computational time dependence on smoothing radius for SeaBeam data

Smoothing Radius nr [samples] Total Time [s] ±1 [s] Time/Iteration [s]

1 2 2
5 10 2
10 20 2
20 39 2
30 57 1.9
40 74 1.9
50 91 1.8

When working with irregular data, choosing a smoothing radius can seem non-

obvious. One of the benefits of using PWS is that the interpolation is not incredibly

sensitive to the choice of radius. A good rule of thumb is to choose the smoothing

radius to be about the size of the hole to be filled. In this case, the SeaBeam data

has a sizable hole in the middle, approximately 70 traces at its largest separation.

With this reasoning, I chose the smoothing radius to be 70 for the final comparison

between the tests.

If the data is sparsely sampled (such as in the case of SeaBeam), the next

item to address is the size of the padding that will be appended to the edges in all

dimensions. This padding is often necessary to remove unseemly artifacts induced by

the edges of the image. A reasonable estimate for this value is half of the smoothing

radius. In the instance above, 35 became the padding size. If the padding is too small

or nonexistent, artifacts along the edges can be produced along with spurious ampli-

tudes. Making the padding too large does not adversely affect the accuracy of the

final reconstruction, but it does increase the computation time by making the problem
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size larger. The compromise comes in finding a padding size large enough to remove

artifacts without becoming too large to waste valuable computational resources.

To test both of these heuristic principles and to gather evidence to support

them, I examine a range of radii — specifically 30, 40, 50, 60, 70, and 80 — for a

range of padding values — specifically 1, 10, 20, 35, 50, and 100. In this experiment,

the number of PWS iterations is set constant to 5. The interpolated data which most

resemble the original data are considered to have the greatest success.

The results are shown in Figures 4.5–4.10. The result of not padding is em-

ulated with a pad of 1 point in Figure 4.5. This collection of images shows strong

edge effects that occur primarily in the lower-right of each of the panels. Another

negative consequence is produced by choosing too small of a smoothing radius for too

few iterations; the interpolation fades out before covering the original area of missing

data. The interpolation simply cannot handle far-reaching gaps in the number of

iterations that it was provided. In the second panel of Figure 4.6 (corresponding to a

smoothing radius of 40), the aforementioned amplitude anomaly, which is artificially

introduced with a gap size being too small, is easily noticeable. Even without these

artifacts, the interpolation does a poor job when the padding is far less than the

radius, as seen the rightmost panel of Figure 4.7 (smoothing radius of 80). Choosing

a padding of 35 (Figure 4.6) produces well-behaved, believable results for smoothing

radii 60, 70, and 80. Good reconstructions are also made for the larger smoothing

radii for large values of padding of 50 and 100 (Figure 4.9 and Figure 4.10). Over this

range in parameter space, very few changes occur concerning the accuracy of the final

reconstruction. With a very large padding value, the interpolation takes more time to

do very little. Thus, the general rule holds: choose a padding value of approximately

half of the size of the smoothing radius, erring on the larger side.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: SeaBeam interpolated image using PWS with a spatial padding of 1
on all sides and smoothing radii (r) of 30, 40, 50, 60, 70, and 80, respectively.

ch04-p-cable/seab rsn30p1,rsn40p1,rsn50p1,rsn60p1,rsn70p1,rsn80p1
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: SeaBeam interpolated image using PWS with a spatial padding of 10
on all sides and smoothing radii (r) of 30, 40, 50, 60, 70, and 80, respectively.

ch04-p-cable/seab rsn30p10,rsn40p10,rsn50p10,rsn60p10,rsn70p10,rsn80p10
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: SeaBeam interpolated image using PWS with a spatial padding of 20
on all sides and smoothing radii (r) of 30, 40, 50, 60, 70, and 80, respectively.

ch04-p-cable/seab rsn30p20,rsn40p20,rsn50p20,rsn60p20,rsn70p20,rsn80p20
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: SeaBeam interpolated image using PWS with a spatial padding of 35
on all sides and smoothing radii (r) of 30, 40, 50, 60, 70, and 80, respectively.

ch04-p-cable/seab rsn30p35,rsn40p35,rsn50p35,rsn60p35,rsn70p35,rsn80p35
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: SeaBeam interpolated image using PWS with a spatial padding of 50
on all sides and smoothing radii (r) of 30, 40, 50, 60, 70, and 80, respectively.

ch04-p-cable/seab rsn30p50,rsn40p50,rsn50p50,rsn60p50,rsn70p50,rsn80p50
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: SeaBeam interpolated image using PWS with a spatial padding of 100
on all sides and smoothing radii (r) of 30, 40, 50, 60, 70, and 80, respectively.

ch04-p-cable/seab rsn30p100,rsn40p100,rsn50p100,rsn60p100,rsn70p100,rsn80p100
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If the padding became too large, the computational cost would increase. The

total time increases linearly with data size. This effect is reproduced by running the

experiment several times with different data sizes and recording the time to comple-

tion. I do this for 4 iterations of PWS with constant smoothing radius. The results

of this test are presented in Figure 4.11. Indeed, the computational cost is simply

linear in data size.

Putting these findings together, I verify that the computational cost of PWS

is linear and can be expressed as O(NiNrN) for Ni number of iterations, Nr size of

smoothing radius, and N number of data points. If both Ni and Nr are small and

independent of N, the cost is linear.
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Figure 4.11: Graph of computation time versus input data size for PWS
ch04-p-cable/seab time
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Random Realizations

The reconstruction produced by PWS appears smooth, as expected, from the

insight gained by the algorithm’s Z-transform notation as a triangle smoother. The

problem associated with this behavior is that the original data does not match the

same smoothness as the reconstructed model. A way to compensate for this is to

introduce random noise into the process of selecting a model. In doing so, we can

inherently introduce artificial information into the end result which is dependent on

those random numbers, but the final product can better match the character of the

initial data, which will look more realistic. I complete this process and using PWS

and prediction-error filters (PEF). The strategy is as follows:

1. Apply PWD to example model

2. Measure variance

3. Make random noise r of the same variance

4. Build initial model by applying PWC: m0 = D−1r

5. Change data: d0 = d−Km0

6. Interpolate d0 to get m̂ using an appropriate method

7. m = m̂ + m0

In the first step, I take the reconstruction using PWS as an example model.

By applying PWD to this image (shown in Figure 4.12) the destruction residual is

produced. The variance of these data is 8.4 · 10−4. Using this information of the

variance, I synthesize pseudo-random Gaussian white noise with several seeds using
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the same variance. Using this noise, I apply PWC (the inverse of PWD) to retrieve a

new model, m0, which, in some sense, is an extracted random texture of the original

data. This texture is depicted in Figure 4.13. Because it was derived from Gaussian

white noise, the values in this image can change, but visually the texture remains

unchanged. The altered data d0 is then formed by subtracting the masked texture

from the original data. This perturbed data then gets interpolated using plane-wave

shaping, in this case with a smoothing radius of 70 and padding on all sides of 35.

The result of this process, m̂, yet is not the end result. The final reconstructed image,

m, is a sum of m̂ and m0. Four realizations of this are provided in Figures 4.14(c)–

4.14(f) alongside the original data (Figure 4.14(a)) and the model found using PWS

without any noise addition (Figure 4.14(b)).

Although the realizations are a bit different, they all share the same texture

present in the original data. Averaging a large number of these realizations would

yield the unperturbed, original PWS reconstruction of Figure 4.14(b).

Similarly prediction-error filters (PEFs) can be used to create random realiza-

tions of the reconstruction. For an example seed of white noise, the extracted pattern

is noticeably striped and shown in Figure 4.15, and the spectrum of the PEF is found

and provided in Figure 4.16. Notice the clustering of high amplitudes associated with

low wavenumbers in the x- and y-directions (i.e., the longitudinal and latitudinal

directions, respectively).

For four seed values, I construct PEFs and apply them to the data. This

action is done both with and without preconditioning. Figure 4.17 shows the inter-

polation results without using preconditioning. Even with a sufficiently high number

of iterations (500 in this case) the PEF-based interpolation fails to provide entirely
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Figure 4.12: Destruction residual of PWS reconstruction
ch04-p-cable/seab sb-pws4sfattr

realistic results. Using preconditioning (displayed in Figure 4.18) does not improve

the behavior. The reconstructions using PEFs generally leave the largest holes only

mildly affected. The acquisition footprint remains although some of the very small

gaps are successfully compensated.

The PWS realizations are far better at filling the largest gaps in the data in a

plausible way than the PEF-based method. The comparable amplitudes inside and

outside the mask and preserved texture are credited as the winning factors. Although

these random realizations can be visually appealing, they introduce features in the

data that might be easily misinterpreted as geological. For this reason, I do not use

them for the remainder of the tests.
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(a) (b)

(c) (d)

Figure 4.13: Initial model created by PWC
ch04-p-cable/seab sbs-s2m0,sbs-s5m0,sbs-s7m0,sbs-s9m0
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Depiction of (a) Original SeaBeam data, (b) PWS inter-
polation using smoothing radius of 70 and a padding size of 35 on
all edges, and (c)–(f) random realizations of PWD with different seeds

ch04-p-cable/seab bin,real-pws-ns70pad35,sbs-s2m,sbs-s5m,sbs-s7m,sbs-s9m
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Figure 4.15: Example REF Pattern ch04-p-cable/seab sb-pef-212415rand

Figure 4.16: Example Spectrum of PEF ch04-p-cable/seab sb-pef-212415frand
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(a) (b)

(c) (d)

Figure 4.17: Reconstructions from the adjusted data using PEF-based interpolation
without preconditioning ch04-p-cable/seab pefp0s2,pefp0s5,pefp0s7,pefp0s9
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(a) (b)

(c) (d)

Figure 4.18: Reconstructions from the adjusted data using PEF-based interpolation
with preconditioning ch04-p-cable/seab pefp1s2,pefp1s5,pefp1s7,pefp1s9
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P-CABLE DATASET

In this section, I use seismic data from the P-cable survey — a 3-D, high-

resolution, marine dataset acquired by the Gulf Coast Carbon Center at the Uni-

versity of Texas at Austin (Hess et al., 2014). The location is in the shallow-water

transition zone off the coast of Galveston, near the San Luis Pass salt dome (Figure

4.19). The water depth is about 14 m. The survey was 26.62 km2 and was acquired

late in 2013. The P-cable acquisition system (Figure 4.20) uses a cable that tows 12

streamers in 12.5 m spacing each with 8 hydrophones with 3.125 m spacing sampling

once every 0.5 ms. The source and receiver depths are difficult to control precisely

and vary between 3 and 5 m. Noting that the common depth point bin size is 1.5625

m and the sample rate is dense, it becomes clear that the survey is high-resolution,

having the ability to successfully measure frequencies up to the Nyquist at 1 kHz in

this case. The expected vertical resolution is about λ/4, or 0.4 m, and horizontal res-

olution is approximately λ/2, or 0.8 m (calculated with an estimated water velocity

of 1550 m/s).

The data have been preprocessed with noise-attenuation procedures (specifi-

cally f-k filtering and anomalous amplitude attenuation) and had the ghosts removed

and designature filter applied by Hess et al. (2014). This was effective at removing

most of the noise. The exception was that the acquired data suffered from semi-

periodic, high-amplitude, bursts of noise. The large burst energy pollutes the original

shot records nearly simultaneously (having less than 1 sample time interval separa-

tion for each trace). Armed with this information, we can conclude that the source

of the noise must have been electromagnetic in nature because of the very high prop-

agation speed needed to traverse all of the tow cables in under 500 µs. A possible
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deduced source would be that the noise was caused by electrical arcing somewhere in

the ship’s equipment or hardware, possibly a capacitor. This noise mostly disappears

after stacking, but some remains. The burst noise becomes severely amplified when

gaining the data. This is one motivation for extracting only a small shallow subset

of the original data for testing with interpolation.

Acquisition in Fall 2013

San Luis Pass

Near Galveston, TX

Figure 4.19: Map of the P-cable marine survey location
ch04-p-cable/pcableinterp location

While collecting this survey, the air gun that was used as the source was not

running at full capacity. As a result, the energy produced by the shots was less

than desired. Only the first second of the data collected is usable; after that, the

illumination becomes too poor to consistently distinguish real structures. For the

interpolation experiments, I extracted a shallow subset of this data.

The large noticeable holes in the data have two main causes. The first is that

obstacles, primarily oil rigs, were in the path of acquisition. By far, the largest source

of deviation from the anticipated acquisition design was the malfunction of the global
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Figure 4.20: Diagram of P-cable acquisition system. Original picture by Geometrics
Inc. ch04-p-cable/pcableinterp p-acq

positioning system used for marine navigation. With both of these problems working

against a full fold map, massive holes litter the data.

Because of the large gaps in the fold map, interpolating across the holes in the

P-cable data is necessary for some of the processing steps. The original stack data is

shown in Figure 4.21. In many places, the gaps are too large for simple inline or cross-

line interpolation schemes. In fact, a 2-D interpolation in any one direction would

produce less-than-satisfactory results simply because of the spread of orientation of

these large holes. For this reason, I use exclusively 3-D interpolation algorithms to

bring in data from all sides and incorporate as much information from the data as

possible. In this way, if a hole is small along any one direction the adjacent data can

help fill the gap in a meaningful way.

For the P-cable data, I first make a mask, shown in Figure 4.22, with an
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Figure 4.21: Stack of the P-cable seismic data. The large holes litter the
image were created during the marine-data-acquisition phase of the project.
ch04-p-cable/pcableinterp pc-data-3d
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associated small-amplitude threshold. If the trace has amplitude values below the

threshold, the mask marks it as dead (with a ’0’). Inversely, live traces will have

corresponding mask values of ’1’. The mask makes it visually obvious to observe how

much data is really missing from the original stack. Next in the interpolation process,

using this mask, I estimate the dip using 3-D PWD and then use this information

to predict missing values. This local slope field has two components, the inline and

the cross-line (Figure 4.23). Finally, using this dip field, the original data and the

mask, I can again apply plane-wave destruction or plane-wave shaping, this time to

interpolate across the gaps, based on the slope, without changing the original data.

Sensitivity Analysis of Smoothing Radius

Because the true seismic response is not known everywhere, no reconstruction

can be trusted with certainty. In PWS, the smoothing radius is a parameter that

affects both the computational time and the relative smoothness (and thus, accuracy)

of the final reconstruction. I interpolated the P-cable data with a range of smoothness

values to select the most visually realistic result and depict the triangle radius’s

response. The findings of choosing this radius at a values of 1, 5, 10, and 20 are

presented in Figures 4.24 and 4.25. Figure 4.24(a) shows that the smoothing radius

of 1 is insufficient; some of the gaps in the data are too large to be accommodated

by this smoothing. The smoothing radius of 20 is too large and, as a result, Figure

4.25(b) shows an artificially deceased amplitude when transitioning into the holes of

missing data. A flat, side-by-side comparison of each reconstruction and the original

data is presented in Figures 4.26–4.28. I conclude the smoothing radius of 5 to be

the most appropriate for this data set given the need for compromise between large

holes and sharp features. The radius of 10 is a bit too much because of the slight

51



Figure 4.22: Mask of the original P-cable stack. White regions correspond to known
data and have an integer value of 1. The holes in the data are black with an integer
value of 0. ch04-p-cable/pcableinterp pc-mask
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(a) (b)

Figure 4.23: Calculated (a) inline dip and (b) cross-line dip

ch04-p-cable/pcableinterp idip-pc,xdip-pc

amplitude decease and the inability to detect sharper features in the seismic data. A

timeslice comparison of all of these radii with the input data and mask are given in

Figure 4.29. Notice the very subtle amplitude changes in the large data gap towards

the lower left. This general trend continues on: by shrinking the smoothing radius,

PWS resolves sharper structures, and increasing this radius gives the ability to span

larger holes such as in the SeaBeam experiment. I suggest a good rule of thumb for

this process is to make the smoothing radius about the width of the data holes of the

input.

Final Results and Analysis

After completing 3-D interpolation of the seismic data, I compare the results.

The interpolation using the PWS-based approach is provided in Figure 4.30. Figure

4.31 shows the PWD interpolation scheme results. In some places, where the gaps

are small, the PWD-based and PWS-based interpolation schemes do a decent job. I
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(a)

(b)

Figure 4.24: P-cable stack interpolation with smoothing radii of (a) 1 and (b) 5

ch04-p-cable/pcableinterp pc-pws-int-o1-itr5-ns1-3d,pc-pws-int-o1-itr5-ns5-3d
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(a)

(b)

Figure 4.25: P-cable stack interpolation with smoothing radii of (a) 10 and (b) 20

ch04-p-cable/pcableinterp pc-pws-int-o1-itr5-ns10-3d,pc-pws-int-o1-itr5-ns20-3d
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Figure 4.26: Original data flattened for display reference
ch04-p-cable/pcableinterp pc-data-flat

can put confidence in these results by noticing that even though I used two different

algorithms for deriving the interpolation, they are still consistent with each other.

The largest holes associated with this dataset may simply be too large for a

great interpolation.

Because the data started off very noisy, some additional noise attenuation

flows might remove more of the electromagnetic burst energy and help give us a more

accurate image.

BLAST DATASET

I use the Blast dataset (Figure 4.32(a)), which came from a seismic experiment

with an open-pit mine-blast source, at Stanford University (Cole, 1995; Claerbout and
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(a)

(b)

Figure 4.27: Comparison of and (b) interpolation us-
ing PWS with smoothing radius of (a) 1 and (b) 5

ch04-p-cable/pcableinterp flatpc-pws-int-o1-itr5-ns1-3d,flatpc-pws-int-o1-itr5-ns5-3d
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(a)

(b)

Figure 4.28: Comparison of interpolation using
PWS with smoothing radius of (a) 10 and (b) 20

ch04-p-cable/pcableinterp flatpc-pws-int-o1-itr5-ns10-3d,flatpc-pws-int-o1-itr5-ns20-3d
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(a) (b)

(c) (d)

(e) (f)

Figure 4.29: Comparison of timeslice 100 ms for (a) the original data, (b) the mask,
and interpolation using PWS with a smoothing radius of (c) 1, (d) 5, (e) 10, and (f) 20.

ch04-p-cable/pcableinterp t100pcd,t100pcm,t100pcn1,t100pcn5,t100pcn10,t100pcn20
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Figure 4.30: P-cable stack interpolation using 3-D PWS.
ch04-p-cable/pcableinterp pc-pws-int-o1-itr5-ns5-3d-old
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Figure 4.31: P-cable stack interpolation using 3-D PWD.
ch04-p-cable/pcableinterp pc-pwd-int-o1-3d-old
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Fomel, 2014). The dataset consists of a grid of 169 receivers about half of which died

during acquisition, leaving much data missing. The same 3-D interpolation schemes

are used here as in the P-cable survey — PWD and PWS. The mask (Figure 4.32(b))

shows which traces are alive. From this information I calculate the dip field, in 3-D

with inline dip in Figure 4.33(a) and cross-line dip shown in Figure 4.33(b).

(a) (b)

Figure 4.32: Depiction of (a) the original mine blast data and (b) its associated mask

ch04-p-cable/blast blast,blastmask

Blast Results

After interpolation, the results between the three iterative interpolation tech-

niques appear quite different in structure. The interpolations utilizing PWD and

PWS are shown in Figure 4.34.

Because of the small size of this dataset, the panels of each can be efficiently

compared with the original. This type of comparison gives a closer look at the be-

havior of these three algorithms. This is achieved in the panel view of Figures 4.35

and 4.36 for PWD and PWS, respectively. This style of plot reproduces the ones of

Fomel (2000) and Claerbout and Fomel (2014).
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(a) (b)

Figure 4.33: Estimated (a) inline dip and (b) cross-line dip

ch04-p-cable/blast idip-blast,xdip-blast

Notice the sharper effect PWD appears to create in features in the data. It’s

impossible to know at the moment if these features are indeed geologic in nature

or just artifacts of the interpolation. In the structural direction, PWS creates a

slightly smoother model. The reconstruction here does not have the same ambiguities

associated with PWD.

CONCLUSIONS

To summarize, I have used plane-wave shaping (PWS) in three missing-data

experiments with the SeaBeam image, the P-cable marine seismic dataset, and the

Blast seismic dataset. While testing the sensitivity of the reconstruction to changes

in the smoothing radius of PWS, a rule-of-thumb was developed: the smoothing

radius should be chosen to be about the size of the largest hole that it is tasked with

filling. In a similar investigation of edge-padding, I recommend choosing a spatial

padding size of half of this smoothing radius to append to both sides of the data (in
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(a)

(b)

Figure 4.34: Missing-data reconstruction for the Blast dataset us-
ing (a) PWD-based and (b) PWS-based interpolation schemes

ch04-p-cable/blast miss-pwd-blast,miss-pws-blast
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Figure 4.35: Panel view of interpolation with PWD. The left half (12 panels) of this
image comes from frames of the original Blast data. The right 12 are taken after
interpolating with a PWD-based approach. ch04-p-cable/blast blast-passfill-pwd
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Figure 4.36: Panel view of interpolation with PWS. The left half (12 panels) of this
image comes from frames of the original Blast data. The right 12 are taken after
interpolating with a PWS-based approach. ch04-p-cable/blast blast-passfill-pws
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all dimensions). The computational cost grows linearly with both of these parameters

— the total data size and the smoothing radius — verifying the cost of implementation

(in big O notation) as O (NiNrN).

I construct random realizations of the interpolated model that capture textural

information using both PWS and PEFs. The PEF method is unable to handle the

larges holes and fails at removing the acquisition footprint. The random realizations

using PWS preserve pattern information and produce the most realistic results of

all the methods attempted in this thesis. However, these reconstructions are highly

dependent on the random noise used to generate them and might introduce artificial

features in the model that can easily be unjustifiably interpreted as real geologic

structures. The SeaBeam image, being 2-D, is interpolated with the 2-D versions

of PWD, PWC, and PWS. The plane-wave techniques produce very similar results

The 3-D P-cable and Blast surveys were interpolated with 3-D PWD in addition to

PWS. For the plane-wave methods, PWD appears to keep sharper features in the

data. PWS produces a slightly smoother (in the direction of local slopes) image.

The reconstruction here does not have the ambiguities associated with PWD, and

the results can be more easily trusted.

Of all of the tests in this chapter, PWS converged in the fewest number of

iterations compared with the alternative interpolation algorithms. PWS appears

relatively stable in ability to handle a large variety of hole sizes in missing-data

problems.
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Chapter 5

Sobel Filter

1

Plane-wave shaping (PWS) is not limited in its use as only an interpolation

scheme. It can be used to regularize a large variety of geophysical data. One addi-

tional application is incorporating PWS into an image-guided Sobel filter.

Detection, extraction, and mapping of fault planes and other discontinuities

is a major challenge in the interpretation of 3-D seismic data. Visually prominent

features can easily overshadow smaller features that are critical to understanding the

structure and depositional environment. Seismic coherency attributes can accelerate

the interpretation process by enhancing edges and providing a quantitative measure

of the significance of discontinuities (Neidell and Taner, 1971; Chopra et al., 2000;

Yilmaz, 2001). I propose a modification of the classic Sobel filter (Sobel and Feldman,

1968a; Kanopoulos et al., 1988) by orienting the filter along structures.

Seismic coherency attributes measure the coherence across multiple seismic

traces along a horizon or time slice. Such attributes can be used to enhance previ-

ously indistinguishable faults and other geological discontinuities. These techniques

provide a powerful tool for better interpretation of seismic images (Chopra and Mar-

furt, 2005). The first seismic coherency attribute cross-correlated each trace with its

1Parts of this chapter appear in Phillips et al. (2015)
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in-line and cross-line neighbors and combined the two results after normalizing by the

energy (Bahorich and Farmer, 1995). This algorithm is very computationally efficient,

but it lacks robustness. More robust coherence algorithms are more computationally

expensive, as many of them require the computation of the covariance matrix (Ger-

sztenkorn and Marfurt, 1999). The recently proposed predictive coherency attribute

(Karimi and Fomel, 2013) requires multiple predictions of each trace in the seismic

cube from neighboring traces.

An image that emphasizes these discontinuities can be created with the Sobel

filter (Sobel and Feldman, 1968b). The Sobel filter is an edge detector that computes

an approximation of the gradient at each point by convolving the data with a dis-

crete differential operator and a triangular, moving average filter. This 2-D filter is

small and integer-valued in each direction, making the Sobel filter computationally

inexpensive. Different modifications of the Sobel filter have been applied previously

for edge detection in seismic images (Aqrawi and Boe, 2011; Chopra et al., 2014; Luo

et al., 1996) .

In this chapter, I propose to modify the Sobel filter to explicitly follow the

structure of seismic horizons. This modification involves plane-wave destruction

(PWD) as a differential operator (Fomel, 2002) and PWS as a smoothing filter (Fomel,

2010; Liu et al., 2010; Swindeman and Fomel, 2015). Phillips et al. (2015) tests the

modification on a synthetic example and field data from the Gulf of Mexico.

Theory

The Sobel operator, S, acts as a way to approximate the gradient of an image.

It is defined in 2-D as the convolution of an image with two 3x3 filters. The first of
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these filters amounts to triangle smoothing in the y-direction and differentiation in

the x-direction,

Sx =

 1 0 −1
2 0 −2
1 0 −1

 =

 1
2
1

 [ 1 0 −1
]
. (5.1)

Similarly, the second filter applies the smoothing and differentiation along the oppo-

site axes and is given by

Sy =

 1 2 1
0 0 0
−1 −2 −1

 , (5.2)

Each component of the Sobel filter is separately convolved with the data (d) to com-

pute a low-pass isotropic approximation of the magnitude of the gradient:

|∇d| ≈
√

(Sx ∗ d)2 + (Sy ∗ d)2. (5.3)

The filter behaves in a way that enhances discontinuities, acting as an edge detector

(O’Gorman et al., 2008).

In the Z-transform notion, Sobel filters can be written as

Sx(Zx, Zy) = Z−1
x Zy + 2Z−1

x + Z−1
x Z−1

y − Zx Zy − 2Zx − Zx Z−1
y , (5.4)

Sy(Zx, Zy) = Z−1
x Zy + 2Zy + Zx Zy ,−Z−1

x Z−1
y − 2Z−1

y − Zx Z−1
y . (5.5)

I propose to modify the filter for application to 3-D seismic images, where the Zx

and Zy operators would represent not simply shifts of samples but shifts between

seismic traces that follow the local plane-wave structure (Fomel, 2007, 2010). In this

case, Zx corresponds to the inline shift, and Zy to the cross-line shift. The derivative

operation is replaced with PWD (Fomel, 2002), and the triangle smoothing operation

is replaced with PWS (Swindeman and Fomel, 2015). These tests are conducted by

Phillips et al. (2015).
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CONCLUSIONS

The Sobel filter provides a straightforward and inexpensive means for enhanc-

ing edges in seismic images and can be modified by orienting it along structure. The

structure-oriented Sobel filter results in an attribute with enhanced faults. Although

this attribute might not be as accurate as some of the other coherency attributes,

it is much cheaper to compute. The proposed structure-oriented Sobel attribute can

help improve geological interpretations of subsurface faults, channels, and other dis-

continuities.
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Chapter 6

Conclusions

Data regularization is a useful tool for handling irregularly sampled data.

Geophysics applications often require finding an appropriate solution to an ill-posed

inverse problem of data regularization. This problem must be addressed appropriately

before many data processing techniques can begin. I build on previous work with

shaping regularization by incorporating plane-wave shaping (PWS) in two and three

dimensions as a data regularization method, which can be used for the interpolation

of seismic data and images.

In this thesis, I use PWS to interpolate several synthetic and field datasets and

test the accuracy of image reconstruction. The image-guided interpolation scheme

preserves information of geologic structures, because PWS conforms to the direction

of the local slopes of an image. For comparison, I apply several alternative interpo-

lation schemes — similarly formulated as an inverse problem with a convolutional

operator to constrain the model space — namely: plane-wave destruction (PWD),

plane-wave construction (PWC), and prediction-error filters (PEFs). Investigating

the convergence rates, I find that PWS converges to a solution in fewer iterations

than the alternative techniques. I demonstrate that the only required parameter for

this method, the smoothing radius, is best selected as the same size as the largest

size of the holes for missing-data problems, and the optional parameter for edge
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padding should be chosen as half of the smoothing radius. Potential applications

of this research include use in well-log interpolation, seismic tomography, and 5-D

interpolation.

I test the effectiveness of PWS as regularization method for handling missing-

data inverse problems on both real and synthetic examples. PWS is useful when

constraining the estimated model parameters according to their slopes. The impulse

responses of PWS filters in both 2-D and 3-D verify this image-guided nature. The

quick rate of convergence of PWS is beneficial to solving large-scale, geophysical

inverse problems, which might only be able to afford a small number of iterations.

Of the methods tested, PWS yields the most accurate reconstruction when stopping

the inversion after only a small number of iterations. Another benefit of PWS is the

natural extension from 2-D to 3-D, providing high potential for practical geophysical

applications beyond simple interpolation.

In Chapter 4 I task PWS with interpolating the SeaBeam image, the P-cable

marine seismic dataset, and the Blast passive-seismic dataset. As the smoothing ra-

dius size and the padding size increase, the computational cost grows linearly, written

as O (NiNrN) in the big-O notation, where Ni is the number of iterations, Nr is the

size of the smoothing radius, and N is the size of the data. When Ni and Nr are

small, the cost is linear in N .

Using both PWS and PEFs, I build noise-incorporating reconstructions that

account for information that captures textural patterns. Multiple random realizations

using PWS preserve structural pattern information and produce the most realistic

results of all the methods attempted in this thesis. In comparison, the PEF technique

was unable to handle the larger holes and failed at removing the acquisition footprint.
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I used 2-D versions of PWD, PWC, and PWS to interpolate the SeaBeam

image, which produced very similar reconstructions. The 3-D P-cable and Blast sur-

veys were interpolated using both 3-D PWD and 3-D PWS. Near the edges, the

reconstructions become less accurate because of the small amount of constraining

information at these locations. Sharp features in the data are better preserved with

PWD, while PWS produces a slightly smoother image with smoothing in the direc-

tion of local slopes. The interpolated image can be more easily trusted for PWS

because it, does not have the same ambiguities as that obtained with PWD. In all

of the experiments in this thesis, PWS converged in the fewest iterations of any of

the alternative interpolation algorithms. PWS also appeared relatively stable in its

ability to handle a large variety of hole sizes in missing data problems. PWS regu-

larization is that it is not limited to interpolation. Some of the potential applications

of this research include use in well-log interpolation, seismic tomography, 5-D seismic

data interpolation, feathering correction, and seismic-discontinuity (e.g., faults and

channels) detection with a structure-oriented Sobel filter.

74



Bibliography

Aqrawi, A. A., and T. H. Boe, 2011, Improved fault segmentation using a dip guided

and modified 3D Sobel filter: SEG Annual Meeting.

Bahorich, M., and S. Farmer, 1995, 3-D seismic discontinuity for faults and strati-

graphic features: The coherence cube: The Leading Edge, 14, 1053–1058.

Bhandari, A., A. Kadambi, R. Whyte, C. Barsi, M. Feigin, A. Dorrington, and R.

Raskar, 2014, Resolving multipath interference in time-of-flight imaging via modu-

lation frequency diversity and sparse regularization: Optics letters, 39, 1705–1708.

Boreham, D., J. Kingston, P. Shaw, and J. van Zeelsi, 1991, 3-D Marine Seismic Data

Processing: Oilfield Review, 41–55.

Chen, Z., S. Fomel, and W. Lu, 2013a, Accelerated plane-wave destruction: Geo-

physics, 78, no. 1.

——–, 2013b, Omnidirectional plane-wave destruction: Geophysics, 78, no. 5.

Chopra, S., R. Kumar, and K. J. Marfurt, 2014, Seismic discontinuity attributes and

Sobel filtering: SEG Annual Meeting, 1625–1628.

Chopra, S., and K. J. Marfurt, 2005, Seismic attributes – A historical perspective:

Geophysics, 70, 3SO–28SO.

Chopra, S., V. Sudhakar, G. Larsen, and H. Leong, 2000, Azimuth-based coherence

for detecting faults and fractures: World Oil, 221, 57–64.

Claerbout, J., 1992, Earth Soundings Analysis: Processing Versus Inversion: Black-

well Scientific Publications.

——–, 1993, 3-D local monoplane annihilator: Stanford Exploration Project, SEP-

77, 19–20.

75



——–, 1999, Geophysical estimation by example: Environmental soundings image

enhancement: Stanford Exploration Project.

——–, 2014, Geophysical estimation by example: Environmental soundings image

enhancement: Stanford Exploration Project.

Claerbout, J., and S. Fomel, 2014, Geophysical Image Estimation by Example: Stan-

ford Exploration Project.

Clapp, R., 2000, 3-D steering filters: Stanford Exploration Project, 105, 109–117.

Clapp, R., B. Biondi, and J. Claerbout, 2004, Incorporating geologic information into

reflection tomography: Geophysics, 69, 533–546.

Clapp, R., B. L. Biondi, S. Fomel, and J. F. Claerbout, 1998, Regularizing veloc-

ity estimation using geologic dip information: SEG Technical Program Expanded

Abstracts, 1851–1854.

Cole, S. P., 1995, Passive seismic and drill-bit experiments using 2-D arrays: PhD

thesis, Stanford University.

Daley, R., 1993, Atmospheric Data Analysis: Cambridge University Press.

Ding, Y., and I. W. Selesnick, 2015, Artifact-free wavelet denoising: Non-convex

sparse regularization, convex optimization: Signal Processing Letters, IEEE, 22,

1364–1368.

Engl, H., M. Hanke, and A. Neubauer, 1996, Regularization of inverse problems:

Kluwer Academic Publishers.
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Yilmaz, Ö., 2001, Seismic data analysis.

79



Zhdanov, M. S., 2002, Geophysical inverse theory and regularization problems: Else-

vier Science Publishing Co., Inc.

80



Vita

Ryan Swindeman grew up in Beecher, Illinois. His early academic years were

spent at Beecher High School before graduating. In 2009, Ryan moved to the Uni-

versity of Illinois at Urbana-Champaign. There, his research was of topics in complex

systems and condensed matter physics. He procured a B.S. in physics with a minor

in mathematics in 2013. In 2013, Ryan began his graduate studies in geophysics at

the University of Texas at Austin. He started as a member of the Texas Consortium

for Computational Seismology, an initiative of the Bureau of Economic Geology and

the Institute for Computational Engineering and Sciences.

Permanent address: 2215 E. Offner Rd. Beecher, IL 60401

This thesis was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

81


	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Chapter 2. Review of Existing Interpolation Strategies
	Chapter 3. Seismic data interpolation using plane-wave shaping regularization
	Chapter 4. Data Interpolation Experiments
	Chapter 5. Sobel Filter
	Chapter 6. Conclusions
	Bibliography
	Vita

